dbeg(x, spec, alpha = 1, a = 1, b = 1, log = FALSE, ...)
pbeg(x, spec, alpha = 1, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...)
qbeg(p, spec, alpha = 1, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...)
rbeg(n, spec, alpha = 1, a = 1, b = 1, ...)
mbeg(g, data, starts, method = "BFGS")
(alpha, a, b, r)
if g
has one parameter or initial values of (alpha, a, b, r, s)
if g
has two parameters"Nelder-Mead"
, "BFGS"
, "CG"
, "L-BFGS-B"
or "SANN"
. The default is "BFGS"
. The details of these methodsx
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the quantile values computed at p
or an object of the same length as n
, giving the random numbers generated or an object giving the values of Cramer-von Misses statistic, Anderson Darling statistic, Kolmogorov Smirnov test statistic and p-value, maximum likelihood estimates, Akaike Information Criterion, Consistent Akaikes Information Criterion, Bayesian Information Criterion, Hannan-Quinn information criterion, standard errors of the maximum likelihood estimates, minimum value of the negative log-likelihood function and convergence status.x=runif(10,min=0,max=1)
dbeg(x,"exp",alpha=1,a=1,b=1)
pbeg(x,"exp",alpha=1,a=1,b=1)
qbeg(x,"exp",alpha=1,a=1,b=1)
rbeg(10,"exp",alpha=1,a=1,b=1)
mbeg("exp",rexp(100),starts=c(1,1,1,1),method="BFGS")
Run the code above in your browser using DataLab