dbetaexpg(x, spec, lambda = 1, a = 1, b = 1, log = FALSE, ...)
pbetaexpg(x, spec, lambda = 1, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...)
qbetaexpg(p, spec, lambda = 1, a = 1, b = 1, log.p = FALSE, lower.tail = TRUE, ...)
rbetaexpg(n, spec, lambda = 1, a = 1, b = 1, ...)
mbetaexpg(g, data, starts, method = "BFGS")(lambda, a, b, r) if g has one parameter or initial values of (lambda, a, b, r, s) if g has two parameters"Nelder-Mead", "BFGS", "CG", "L-BFGS-B" or "SANN". The default is "BFGS". The details of these methodsx, giving the pdf or cdf values computed at x or an object of the same length as p, giving the quantile values computed at p or an object of the same length as n, giving the random numbers generated or an object giving the values of Cramer-von Misses statistic, Anderson Darling statistic, Kolmogorov Smirnov test statistic and p-value, maximum likelihood estimates, Akaike Information Criterion, Consistent Akaikes Information Criterion, Bayesian Information Criterion, Hannan-Quinn information criterion, standard errors of the maximum likelihood estimates, minimum value of the negative log-likelihood function and convergence status.x=runif(10,min=0,max=1)
dbetaexpg(x,"exp",lambda=1,a=1,b=1)
pbetaexpg(x,"exp",lambda=1,a=1,b=1)
qbetaexpg(x,"exp",lambda=1,a=1,b=1)
rbetaexpg(10,"exp",lambda=1,a=1,b=1)
mbetaexpg("exp",rexp(100),starts=c(1,1,1,1),method="BFGS")Run the code above in your browser using DataLab