dexpkumg(x, spec, a = 1, b = 1, c = 1, log = FALSE, ...)
pexpkumg(x, spec, a = 1, b = 1, c = 1, log.p = FALSE, lower.tail = TRUE, ...)
qexpkumg(p, spec, a = 1, b = 1, c = 1, log.p = FALSE, lower.tail = TRUE, ...)
rexpkumg(n, spec, a = 1, b = 1, c = 1, ...)
mexpkumg(g, data, starts, method = "BFGS")(a, b, c, r) if g has one parameter or initial values of (a, b, c, r, s) if g has two parameters"Nelder-Mead", "BFGS", "CG", "L-BFGS-B" or "SANN". The default is "BFGS". The details of these methodsx, giving the pdf or cdf values computed at x or an object of the same length as p, giving the quantile values computed at p or an object of the same length as n, giving the random numbers generated or an object giving the values of Cramer-von Misses statistic, Anderson Darling statistic, Kolmogorov Smirnov test statistic and p-value, maximum likelihood estimates, Akaike Information Criterion, Consistent Akaikes Information Criterion, Bayesian Information Criterion, Hannan-Quinn information criterion, standard errors of the maximum likelihood estimates, minimum value of the negative log-likelihood function and convergence status.x=runif(10,min=0,max=1)
dexpkumg(x,"exp",a=1,b=1,c=1)
pexpkumg(x,"exp",a=1,b=1,c=1)
qexpkumg(x,"exp",a=1,b=1,c=1)
rexpkumg(10,"exp",a=1,b=1,c=1)
mexpkumg("exp",rexp(100),starts=c(1,1,1,1),method="BFGS")Run the code above in your browser using DataLab