dgepg(x, spec, theta = 1, eta = 0.5, log = FALSE, ...)
pgepg(x, spec, theta = 1, eta = 0.5, log.p = FALSE, lower.tail = TRUE, ...)
qgepg(p, spec, theta = 1, eta = 0.5, log.p = FALSE, lower.tail = TRUE, ...)
rgepg(n, spec, theta = 1, eta = 0.5, ...)
mgepg(g, data, starts, method = "BFGS")
(theta, eta, r)
if g
has one parameter or initial values of (theta, eta, r, s)
if g
has two parameters"Nelder-Mead"
, "BFGS"
, "CG"
, "L-BFGS-B"
or "SANN"
. The default is "BFGS"
. The details of these methodsx
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the quantile values computed at p
or an object of the same length as n
, giving the random numbers generated or an object giving the values of Cramer-von Misses statistic, Anderson Darling statistic, Kolmogorov Smirnov test statistic and p-value, maximum likelihood estimates, Akaike Information Criterion, Consistent Akaikes Information Criterion, Bayesian Information Criterion, Hannan-Quinn information criterion, standard errors of the maximum likelihood estimates, minimum value of the negative log-likelihood function and convergence status.x=runif(10,min=0,max=1)
dgepg(x,"exp",theta=1,eta=0.5)
pgepg(x,"exp",theta=1,eta=0.5)
qgepg(x,"exp",theta=1,eta=0.5)
rgepg(10,"exp",theta=1,eta=0.5)
mgepg("exp",rexp(100),starts=c(1,0.5,1),method="BFGS")
Run the code above in your browser using DataLab