library(NlsyLinks) # Load the package into the current R session.
dsLinks <- Links79PairExpanded # Load the dataset from the NlsyLinks package.
dsLinks <- dsLinks[dsLinks$RelationshipPath == "Gen2Siblings", ]
oName_S1 <- "MathStandardized_S1" # Stands for Outcome1
oName_S2 <- "MathStandardized_S2" # Stands for Outcome2
dsGroupSummary <- RGroupSummary(dsLinks, oName_S1, oName_S2)
dsGroupSummary
# Should return:
# R Included PairCount O1Mean O2Mean O1Variance O2Variance O1O2Covariance Correlation
# 1 0.250 TRUE 2718 94.6439 95.5990 169.650 207.842 41.0783 0.218761
# 2 0.375 TRUE 139 92.6043 93.1655 172.531 187.081 40.4790 0.225311
# 3 0.500 TRUE 5511 99.8940 100.1789 230.504 232.971 107.3707 0.463336
# 4 0.750 FALSE 2 108.5000 106.0000 220.500 18.000 63.0000 1.000000
# 5 1.000 TRUE 22 98.6364 95.5455 319.195 343.117 277.5887 0.838789
# Determinant PosDefinite
# 1 33573.0 TRUE
# 2 30638.7 TRUE
# 3 42172.2 TRUE
# 4 0.0 FALSE
# 5 32465.6 TRUE
# To get summary stats for the whole sample, create one large inclusive group.
dsLinks$Dummy <- 1
(dsSampleSummary <- RGroupSummary(dsLinks, oName_S1, oName_S2, rName = "Dummy"))
# Should return:
# Dummy Included PairCount O1Mean O2Mean O1Variance O2Variance O1O2Covariance
# 1 1 TRUE 8392 98.07162 98.56864 216.466 229.2988 90.90266
# Correlation Determinant PosDefinite
# 1 0.4080195 41372.1 TRUE
###
### ReadCsvNlsy79
###
if (FALSE) {
filePathGen2 <- "~/Nlsy/Datasets/gen2-birth.csv"
ds <- ReadCsvNlsy79Gen2(filePath = filePathGen2)
}
Run the code above in your browser using DataLab