## Setting up dummy sampling for fast execution of example
## Please use 4 chains and 100x more warmup & iter in practice
.user_mc_options <- options(
OncoBayes2.MC.warmup = 10, OncoBayes2.MC.iter = 20, OncoBayes2.MC.chains = 1,
OncoBayes2.MC.save_warmup = FALSE
)
example_model("combo2", silent = TRUE)
# Plot the dose-toxicity curve
plot_toxicity_curve(blrmfit,
x = "drug_A",
group = ~ group_id * drug_B,
newdata = subset(dose_info_combo2, group_id == "trial_AB"),
facet_args = list(ncol = 4)
)
# Plot posterior DLT-rate-interval probabilities at discrete dose levels
plot_toxicity_intervals(blrmfit,
x = "drug_A",
group = ~ group_id * drug_B,
newdata = subset(dose_info_combo2, group_id == "trial_AB")
)
# Plot posterior DLT-rate-interval probabilities over continuous dose
plot_toxicity_intervals_stacked(blrmfit,
x = "drug_A",
group = ~ group_id * drug_B,
newdata = subset(dose_info_combo2, group_id == "trial_AB")
)
# Plot predictive distribution probabilities over continuous dose
plot_toxicity_intervals_stacked(blrmfit,
x = "drug_A",
group = ~ group_id * drug_B,
predictive = TRUE,
interval_prob = c(-1, 0, 1, 6),
newdata = transform(
subset(
dose_info_combo2,
group_id == "trial_AB"
),
num_patients = 6,
num_toxicities = 0
)
)
## Recover user set sampling defaults
options(.user_mc_options)
Run the code above in your browser using DataLab