## Setting up dummy sampling for fast execution of example
## Please use 4 chains and 100x more warmup & iter in practice
.user_mc_options <- options(
OncoBayes2.MC.warmup = 10, OncoBayes2.MC.iter = 20, OncoBayes2.MC.chains = 1,
OncoBayes2.MC.save_warmup = FALSE
)
## example combo3
library(abind)
dref <- c(500, 500, 1000)
num_comp <- 3
num_inter <- choose(3, 2) + 1
num_strata <- nlevels(hist_combo3$stratum_id)
num_groups <- nlevels(hist_combo3$group_id)
blrmfit <- blrm_exnex(
cbind(num_toxicities, num_patients - num_toxicities) ~
1 + I(log(drug_A / dref[1])) |
1 + I(log(drug_B / dref[2])) |
1 + I(log(drug_C / dref[3])) |
0
+ I(drug_A / dref[1] * drug_B / dref[2])
+ I(drug_A / dref[1] * drug_C / dref[3])
+ I(drug_B / dref[2] * drug_C / dref[3])
+ I(drug_A / dref[1] * drug_B / dref[2] * drug_C / dref[3]) |
stratum_id / group_id,
data = hist_combo3,
prior_EX_mu_comp = replicate(num_comp, mixmvnorm(c(1, logit(1/3), 0, diag(c(2^2, 1)))), FALSE),
prior_EX_tau_comp = list(replicate(num_comp,
mixmvnorm(c(1, log(c(0.25, 0.125)),
diag(c(log(4)/1.96, log(4)/1.96)^2))), FALSE),
replicate(num_comp,
mixmvnorm(c(1, log(2 * c(0.25, 0.125)),
diag(c(log(4)/1.96, log(4)/1.96)^2))), FALSE)),
prior_EX_mu_inter = mixmvnorm(c(1, rep.int(0, num_inter),
diag((rep.int(sqrt(2) / 2, num_inter))^2))),
prior_EX_tau_inter = replicate(num_strata,
mixmvnorm(c(1, rep.int(log(0.25), num_inter),
diag((rep.int(log(2) / 1.96, num_inter))^2))), FALSE),
prior_EX_prob_comp = matrix(0.9, nrow = num_groups, ncol = num_comp),
prior_EX_prob_inter = matrix(1.0, nrow = num_groups, ncol = num_inter),
prior_is_EXNEX_comp = rep(TRUE, num_comp),
prior_is_EXNEX_inter = rep(FALSE, num_inter),
prior_tau_dist = 1,
prior_PD = FALSE
)
## Recover user set sampling defaults
options(.user_mc_options)
Run the code above in your browser using DataLab