Converts an OMLDataSet
to a Task
.
convertOMLDataSetToMlr(
obj,
mlr.task.id = "",
task.type = NULL,
target = obj$desc$default.target.attribute,
ignore.flagged.attributes = TRUE,
drop.levels = TRUE,
fix.colnames = TRUE,
verbosity = NULL
)
[Task
].
[OMLDataSet
]
The object that should be converted.
[character(1)
]
Id string for Task
object.
The strings <oml.data.name>
, <oml.data.id>
and <oml.data.version>
will be replaced by their respective values contained in the OMLDataSet
object.
Default is <oml.data.name>
.
[character(1)
]
As we only pass the data set, we need to define the task type manually.
Possible are: “Supervised Classification”, “Supervised Regression”,
“Survival Analysis”.
Default is NULL
which means to guess it from the target column in the
data set. If that is a factor or a logical, we choose classification.
If it is numeric we choose regression. In all other cases an error is thrown.
[character
]
The target for the classification/regression task.
Default is the default.target.attribute
of the OMLDataSetDescription
.
[logical(1)
]
Should those features that are listed in the data set description slot “ignore.attribute”
be removed?
Default is TRUE
.
[logical(1)
]
Should empty factor levels be dropped in the data?
Default is TRUE
.
[logical(1)
]
Should colnames of the data be fixed using make.names
?
Default is TRUE
.
[integer(1)
]
Print verbose output on console? Possible values are:
0
: normal output,
1
: info output,
2
: debug output.
Default is set via setOMLConfig
.
Other data set-related functions:
OMLDataSetDescription
,
OMLDataSet
,
convertMlrTaskToOMLDataSet()
,
deleteOMLObject()
,
getOMLDataSet()
,
listOMLDataSets()
,
tagOMLObject()
,
uploadOMLDataSet()
# \dontrun{
# library("mlr")
# autosOML = getOMLDataSet(data.id = 9)
# autosMlr = convertOMLDataSetToMlr(autosOML)
# }
Run the code above in your browser using DataLab