Learn R Programming

OpenMx (version 2.7.9)

mxCompare: Assign Model Parameters

Description

Compare the fit of a model or set of models to a reference model or set of reference models. The output is a table with one row per model comparison.

Usage

mxCompare(base, comparison, ..., all = FALSE)

Arguments

base
A MxModel object or list of MxModel objects.
comparison
A MxModel object or list of MxModel objects.
...
Not used. Forces remaining arguments to be specified by name.
all
A boolean value on whether to compare all bases with all comparisons. Defaults to FALSE.

Details

The mxCompare function is used to compare the fit of one or more MxMatrix objects with output to one or more comparison models. Fit statistics for the comparison model or models are subtracted from the fit statistics for the base model or models. All models included in the ‘base’ argument are also listed without comparison (compared to a <NA> model) to present their raw fit statistics. Model comparisons are made by subtracting the fit of the comparison model from the fit of a base model. To make sure that the differences between models are positive and yield p-values for likelihood ratio tests, the model or models listed in the ‘base’ argument should be more saturated (i.e., more estimated parameters and fewer degrees of freedom) than models listed in the ‘comparison’ argument. If a comparison is made where the comparison model has a higher minus 2 log likelihood (-2LL) than the base model, then the difference in their -2LLs will be negative. P-values for likelihood ratio tests will not be reported when either the -2LL or degrees of freedom for the comparison are negative. When multiple models are included in both the ‘base’ and ‘comparison’ arguments, then comparisons are made between the two lists of models based on the value of the ‘all’ argument. If ‘all’ is set to FALSE (default), then the first model in the ‘base’ list is compared to the first model in the ‘comparison’ list, second with second, and so on. If there are an unequal number of ‘base’ and ‘comparison’ models, then the shorter list of models is repeated to match the length of the longer list. For example, comparing base models ‘B1’ and ‘B2’ with comparison models ‘C1’, ‘C2’ and ‘C3’ will yield three comparisons: ‘B1’ with ‘C1’, ‘B2’ with ‘C2’, and ‘B1’ with ‘C3’. Each of those comparisons are prefaced by a comparison between the base model and a missing comparison model to present the fit of the base model. If ‘all’ is set to TRUE, all possible comparisons between base and comparison models are made, and one entry is made for each base model. All comparisons involving the first model in ‘base’ are made first, followed by all comparisons with the second ‘base’ model, and so on. When there are multiple models in either the ‘base’ or ‘comparison’ arguments but not both, then the ‘all’ argument does not affect the set of comparisons made. The following columns appear in the output:
base
Name of the base model.
comparison
Name of the comparison model. Is <NA> for the first
ep
Estimated parameters of the comparison model.
minus2LL
Minus 2*log-likelihood of the comparison model. If the comparison model is <NA>, then the minus 2*log-likelihood of the base model is given.
df
Degrees in freedom of the comparison model. If the comparison model is <NA>, then the degrees of freedom of the base model is given.
AIC
Akaike's Information Criterion for the comparison model. If the comparison model is <NA>, then the AIC of the base model is given.
diffLL
Difference in minus 2*log-likelihoods of the base and comparison models. Will be positive when base model -2LL is higher than comparison model -2LL.
diffdf
Difference in degrees of freedoms of the base and comparison models. Will be positive when base model DF is lower than comparison model DF (base model estimated parameters is higher than comparison model estimated parameters)
p
P-value for likelihood ratio test based on diffLL and diffdf values.
The mxCompare function will give a p-value for any comparison in which both ‘diffLL’ and ‘diffdf’ are non-negative. However, this p-value is based on the assumptions of the likelihood ratio test, specifically that the two models being compared are nested. The likelihood ratio test and associated p-values are not valid when the comparison model is not nested in the referenced base model. Use options('digits' = N) to set the minimum number of significant digits to be printed in values. The mxCompare function does not directly accept a digits argument, and depends on the value of the 'digits' option.

See Also

mxModel; options (use options('mxOptions') to see all the OpenMx-specific options)

Examples

Run this code

data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G1")
model1 <- mxModel(model="One Factor", type="RAM",
      manifestVars = manifests,
      latentVars = latents,
      mxPath(from = latents, to=manifests),
      mxPath(from = manifests, arrows = 2),
      mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
      mxData(cov(demoOneFactor), type = "cov", numObs = 500)
)

fit1 <- mxRun(model1)

latents <- c("G1", "G2")
model2 <- mxModel(model="Two Factor", type="RAM",
      manifestVars = manifests,
      latentVars = latents,
      mxPath(from = latents[1], to=manifests[1:3]),
      mxPath(from = latents[2], to=manifests[4:5]),
      mxPath(from = manifests, arrows = 2),
      mxPath(from = latents, arrows = 2, free = FALSE, values = 1.0),
      mxData(cov(demoOneFactor), type = "cov", numObs=500)
)
fit2 <- mxRun(model2)

mxCompare(fit1, fit2)

# vary precision of the output
oldPrecision = as.numeric(options('digits')) 
options('digits' = 1)
mxCompare(fit1, fit2)
options('digits' = oldPrecision)

Run the code above in your browser using DataLab