Learn R Programming

OpenMx (version 2.7.9)

mxComputeOnce: Compute something once

Description

Some models are optimized for a sparse Hessian. Therefore, it can be much more efficient to compute the inverse Hessian in comparison to computing the Hessian and then inverting it.

Usage

mxComputeOnce(from, what = "nothing", how = NULL, ...,
  freeSet = NA_character_, verbose = 0L, .is.bestfit = FALSE)

Arguments

from
the object to perform the computation (a vector of expectation or fit function names)
what
what to compute (default is "nothing")
how
to compute it (optional)
...
Not used. Forces remaining arguments to be specified by name.
freeSet
names of matrices containing free variables
verbose
the level of debugging output
.is.bestfit
do not use; for backward compatibility

Details

The information matrix is only valid when parameters are at the maximum likelihood estimate. The information matrix is returned in model$output$hessian. You cannot request both the information matrix and the Hessian. The information matrix is invarient to the sign of the log likelihood scale whereas the Hessian is not. Use the how parameter to specify which approximation to use (one of "default", "hessian", "sandwich", "bread", and "meat").

Examples

Run this code
data(demoOneFactor)
factorModel <- mxModel(name ="One Factor",
  mxMatrix(type="Full", nrow=5, ncol=1, free=TRUE, values=0.2, name="A"),
    mxMatrix(type="Symm", nrow=1, ncol=1, free=FALSE, values=1, name="L"),
    mxMatrix(type="Diag", nrow=5, ncol=5, free=TRUE, values=1, name="U"),
    mxAlgebra(expression=A %*% L %*% t(A) + U, name="R"),
    mxFitFunctionML(),mxExpectationNormal(covariance="R", dimnames=names(demoOneFactor)),
    mxData(observed=cov(demoOneFactor), type="cov", numObs=500),
    mxComputeOnce('fitfunction', 'fit'))
factorModelFit <- mxRun(factorModel)
factorModelFit$output$fit  # 972.15

Run the code above in your browser using DataLab