mxLISRELObjective(LX=NA, LY=NA, BE=NA, GA=NA, PH=NA, PS=NA, TD=NA, TE=NA, TH=NA,
   TX = NA, TY = NA, KA = NA, AL = NA,
   dimnames = NA, thresholds = NA, vector = FALSE, threshnames = dimnames)| Matrix | Word | Abbreviation | Dimensions | Expression | Description | 
| \(\Lambda_x\) | Lambda x | LX | NX x NK | Exogenous Factor Loading Matrix | |
| \(\Lambda_y\) | Lambda y | LY | NY x NE | Endogenous Factor Loading Matrix | |
| \(B\) | Beta | BE | NE x NE | Regressions of Latent Endogenous Variables Predicting Endogenous Variables | |
| \(\Gamma\) | Gamma | GA | NE x NK | Regressions of Latent Exogenous Variables Predicting Endogenous Variables | |
| \(\Phi\) | Phi | PH | NK x NK | cov(\(\xi\)) | Covariance Matrix of Latent Exogenous Variables | 
| \(\Psi\) | Psi | PS | NE x NE | cov(\(\zeta\)) | Residual Covariance Matrix of Latent Endogenous Variables | 
| \(\Theta_{\delta}\) | Theta delta | TD | NX x NX | cov(\(\delta\)) | Residual Covariance Matrix of Manifest Exogenous Variables | 
| \(\Theta_{\epsilon}\) | Theta epsilon | TE | NY x NY | cov(\(\epsilon\)) | Residual Covariance Matrix of Manifest Endogenous Variables | 
| \(\Theta_{\delta \epsilon}\) | Theta delta epsilson | TH | NX x NY | cov(\(\delta, \epsilon\)) | Residual Covariance Matrix of Manifest Exogenous with Endogenous Variables | 
| \(\tau_x\) | tau x | TX | NX x 1 | Residual Means of Manifest Exogenous Variables | |
| \(\tau_y\) | tau y | TY | NY x 1 | Residual Means of Manifest Endogenous Variables | |
| \(\kappa\) | kappa | KA | NK x 1 | mean(\(\xi\)) | Means of Latent Exogenous Variables | 
| \(\alpha\) | alpha | AL | NE x 1 | Residual Means of Latent Endogenous Variables | 
   
   #####------------------------------#####
   ##### Factor Model
   mLX <- mxMatrix("Full", values=c(.5, .6, .8, rep(0, 6), .4, .7, .5),
      name="LX", nrow=6, ncol=2,
      free=c(TRUE,TRUE,TRUE,rep(FALSE, 6),TRUE,TRUE,TRUE))
   mTD <- mxMatrix("Diag", values=c(rep(.2, 6)), name="TD", nrow=6, ncol=6,
      free=TRUE)
   mPH <- mxMatrix("Symm", values=c(1, .3, 1), name="PH", nrow=2, ncol=2,
      free=c(FALSE, TRUE, FALSE))
   
   # Create a LISREL objective with LX, TD, and PH matrix names
   objective <- mxLISRELObjective(LX="LX", TD="TD", PH="PH")
   
   testModel <- mxModel(model="testModel", mLX, mTD, mPH, objective)
Run the code above in your browser using DataLab