# default is euclidean distance and ward clustering
bertinCluster(bell2010)
### applying different distance measures and cluster methods
# euclidean distance and single linkage clustering
bertinCluster(bell2010, cmethod = "single")
# manhattan distance and single linkage clustering
bertinCluster(bell2010, dmethod = "manhattan", cm = "single")
# minkowksi distance with power of 2 = euclidean distance
bertinCluster(bell2010, dm = "mink", p = 2)
### using different methods for constructs and elements
# ward clustering for constructs, single linkage for elements
bertinCluster(bell2010, cmethod = c("ward.D", "single"))
# euclidean distance measure for constructs, manhatten
# distance for elements
bertinCluster(bell2010, dmethod = c("euclidean", "man"))
# minkowski metric with different powers for constructs and elements
bertinCluster(bell2010, dmethod = "mink", p = c(2, 1))
### clustering either constructs or elements only
# euclidean distance and ward clustering for constructs no
# clustering for elements
bertinCluster(bell2010, cmethod = c("ward.D", NA))
# euclidean distance and single linkage clustering for elements
# no clustering for constructs
bertinCluster(bell2010, cm = c(NA, "single"), align = FALSE)
### changing the appearance
# different dendrogram type
bertinCluster(bell2010, type = "rectangle")
# no axis drawn for dendrogram
bertinCluster(bell2010, draw.axis = FALSE)
### passing on arguments to bertin function via ...
# grey cell borders in bertin display
bertinCluster(bell2010, border = "grey")
# omit printing of grid scores, i.e. colors only
bertinCluster(bell2010, showvalues = FALSE)
### changing the layout
# making the vertical dendrogram bigger
bertinCluster(bell2010, xsegs = c(0, .2, .5, .7, 1))
# making the horizontal dendrogram bigger
bertinCluster(bell2010, ysegs = c(0, .3, .8, 1))
Run the code above in your browser using DataLab