Learn R Programming

PMCMRplus (version 1.9.3)

dunnettT3Test: Dunnett's T3 Test

Description

Performs Dunnett's all-pairs comparison test for normally distributed data with unequal variances.

Usage

dunnettT3Test(x, ...)

# S3 method for default dunnettT3Test(x, g, ...)

# S3 method for formula dunnettT3Test(formula, data, subset, na.action, ...)

# S3 method for aov dunnettT3Test(x, ...)

Arguments

x

a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an aov fit.

further arguments to be passed to or from methods.

g

a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

formula

a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data

an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Value

A list with class "PMCMR" containing the following components:

method

a character string indicating what type of test was performed.

data.name

a character string giving the name(s) of the data.

statistic

lower-triangle matrix of the estimated quantiles of the pairwise test statistics.

p.value

lower-triangle matrix of the p-values for the pairwise tests.

alternative

a character string describing the alternative hypothesis.

p.adjust.method

a character string describing the method for p-value adjustment.

model

a data frame of the input data.

dist

a string that denotes the test distribution.

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals but unequal groups variances the T3 test of Dunnett can be performed. Let \(X_{ij}\) denote a continuous random variable with the \(j\)-the realization (\(1 \le j \le n_i\)) in the \(i\)-th group (\(1 \le i \le k\)). Furthermore, the total sample size is \(N = \sum_{i=1}^k n_i\). A total of \(m = k(k-1)/2\) hypotheses can be tested: The null hypothesis is H\(_{ij}: \mu_i = \mu_j ~~ (i \ne j)\) is tested against the alternative A\(_{ij}: \mu_i \ne \mu_j\) (two-tailed). Dunnett T3 all-pairs test statistics are given by

$$ t_{ij} \frac{\bar{X}_i - \bar{X_j}} {\left( s^2_j / n_j + s^2_i / n_i \right)^{1/2}}, ~~ (i \ne j) $$

with \(s^2_i\) the variance of the \(i\)-th group. The null hypothesis is rejected (two-tailed) if

$$ \mathrm{Pr} \left\{ |t_{ij}| \ge T_{v_{ij}\rho_{ij}\alpha'/2} | \mathrm{H} \right\}_{ij} = \alpha, $$

with Welch's approximate solution for calculating the degree of freedom.

$$ v_{ij} = \frac{\left( s^2_i / n_i + s^2_j / n_j \right)^2} {s^4_i / n^2_i \left(n_i - 1\right) + s^4_j / n^2_j \left(n_j - 1\right)}. $$

The \(p\)-values are computed from the studentized maximum modulus distribution that is the equivalent of the multivariate t distribution with \(\rho_{ii} = 1, ~ \rho_{ij} = 0 ~ (i \ne j)\). The function pmvt is used to calculate the \(p\)-values.

References

C. W. Dunnett (1980) Pair wise multiple comparisons in the unequal variance case, Journal of the American Statistical Association 75, 796--800.

See Also

pmvt

Examples

Run this code
# NOT RUN {
fit <- aov(weight ~ feed, chickwts)
shapiro.test(residuals(fit))
bartlett.test(weight ~ feed, chickwts)
anova(fit)

## also works with fitted objects of class aov
res <- dunnettT3Test(fit)
summary(res)
summaryGroup(res)

# }

Run the code above in your browser using DataLab