Learn R Programming

PMCMRplus (version 1.9.3)

johnsonTest: Testing against Ordered Alternatives (Johnson-Mehrotra Test)

Description

Performs the Johnson-Mehrotra test for testing against ordered alternatives in a balanced one-factorial sampling design.

Usage

johnsonTest(x, ...)

# S3 method for default johnsonTest(x, g, alternative = c("two.sided", "greater", "less"), ...)

# S3 method for formula johnsonTest( formula, data, subset, na.action, alternative = c("two.sided", "greater", "less"), ... )

Arguments

x

a numeric vector of data values, or a list of numeric data vectors.

further arguments to be passed to or from methods.

g

a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

alternative

the alternative hypothesis. Defaults to "two.sided".

formula

a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data

an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Value

A list with class "htest" containing the following components:

method

a character string indicating what type of test was performed.

data.name

a character string giving the name(s) of the data.

statistic

the estimated quantile of the test statistic.

p.value

the p-value for the test.

parameter

the parameters of the test statistic, if any.

alternative

a character string describing the alternative hypothesis.

estimates

the estimates, if any.

null.value

the estimate under the null hypothesis, if any.

Details

The null hypothesis, H\(_0: \theta_1 = \theta_2 = \ldots = \theta_k\) is tested against a simple order hypothesis, H\(_\mathrm{A}: \theta_1 \le \theta_2 \le \ldots \le \theta_k,~\theta_1 < \theta_k\).

The p-values are estimated from the standard normal distribution.

References

Bortz, J. (1993). Statistik f<U+00FC>r Sozialwissenschaftler (4th ed.). Berlin: Springer.

Johnson, R. A., Mehrotra, K. G. (1972) Some c-sample nonparametric tests for ordered alternatives. Journal of the Indian Statistical Association 9, 8--23.

See Also

kruskalTest and shirleyWilliamsTest of the package PMCMRplus, kruskal.test of the library stats.

Examples

Run this code
# NOT RUN {
## Example from Sachs (1997, p. 402)
x <- c(106, 114, 116, 127, 145,
       110, 125, 143, 148, 151,
       136, 139, 149, 160, 174)
g <- gl(3,5)
levels(g) <- c("A", "B", "C")

## Chacko's test
chackoTest(x, g)

## Cuzick's test
cuzickTest(x, g)

## Johnson-Mehrotra test
johnsonTest(x, g)

## Jonckheere-Terpstra test
jonckheereTest(x, g)

## Le's test
leTest(x, g)

## Spearman type test
spearmanTest(x, g)

## Murakami's BWS trend test
bwsTrendTest(x, g)

## Fligner-Wolfe test
flignerWolfeTest(x, g)

## Shan-Young-Kang test
shanTest(x, g)

# }

Run the code above in your browser using DataLab