Starting values for the log-linear Poisson Network Autoregressive model of order \(p\) with \(q\) covariates (log-PNAR(\(p\))).
log_lin_narpq_init(y, W, p, Z = NULL)
A vector with the initial values.
A \(TT\) x \(N\) time series object or a \(TT\) x \(N\) numerical matrix with the \(N\) multivariate count time series over \(TT\) time periods.
The \(N\) x \(N\) row-normalized non-negative adjacency matrix describing the network. The main diagonal entries of the matrix should be zeros, all the other entries should be non-negative and the maximum sum of elements over the rows should equal one. The function row-normalizes the matrix if a non-normalized adjacency matrix is provided.
The number of lags in the model.
An \(N\) x \(q\) matrix of covariates (one for each column), where \(q\) is the number of covariates in the model.
Mirko Armillotta, Michail Tsagris and Konstantinos Fokianos.
This function computes initial values for the log-linear Poisson Network Autoregressive model of order \(p\) with \(q\) covariates (log-PNAR(\(p\))) with stationarity conditions. These initial values are simply the ordinary least squares estimators with a correction.
Armillotta, M. and K. Fokianos (2023). Nonlinear network autoregression. Annals of Statistics, 51(6): 2526--2552.
Armillotta, M. and K. Fokianos (2024). Count network autoregression. Journal of Time Series Analysis, 45(4): 584--612.
Armillotta, M., Tsagris, M. and Fokianos, K. (2024). Inference for Network Count Time Series with the R Package PNAR. The R Journal, 15/4: 255--269.
log_lin_estimnarpq
data(crime)
data(crime_W)
mod1 <- log_lin_narpq_init(crime, crime_W, p = 2)
Run the code above in your browser using DataLab