# NOT RUN {
################# GPCM and 4PL mixed #########################################
# some threshold parameters
THRES <- matrix(c(-2,-1.23,1.11,3.48,1
,2,-1,-0.2,0.5,1.3,-0.8,1.5),nrow=2)
# slopes
sl <- c(0.5,1,1.5,1.1,1,0.98)
THRESx <- THRES
THRESx[2,1:3] <- NA
# for the 4PL item the estimated parameters are submitted,
# for the GPCM items the lower asymptote = 0
# and the upper asymptote = 1.
la <- c(0.02,0.1,0,0,0,0)
ua <- c(0.97,0.91,1,1,1,1)
awmatrix <- matrix(c(1,0,1,0,1,1,1,0,0,1
,2,0,0,0,0,0,0,0,0,1
,1,2,2,1,1,1,1,0,0,1),byrow=TRUE,nrow=5)
# create model2est
# this function tries to help finding the appropriate
# model by inspecting the THRESx.
model2est <- findmodel(THRESx)
# MLE
respmixed_mle <- PPall(respm = awmatrix,thres = THRESx,
slopes = sl,lowerA = la, upperA=ua,type = "mle",
model2est=model2est)
# WLE
respmixed_wle <- PPall(respm = awmatrix,thres = THRESx,
slopes = sl,lowerA = la, upperA=ua,type = "wle",
model2est=model2est)
# MAP estimation
respmixed_map <- PPall(respm = awmatrix,thres = THRESx,
slopes = sl,lowerA = la, upperA=ua, type = "map",
model2est=model2est)
# EAP estimation
respmixed_eap <- PPall(respm = awmatrix,thres = THRESx,
slopes = sl,lowerA = la, upperA=ua, type = "eap",
model2est=model2est)
# Robust estimation
respmixed_rob <- PPall(respm = awmatrix,thres = THRESx,
slopes = sl,lowerA = la, upperA=ua, type = "robust",
model2est=model2est)
# summary to summarize the results
summary(respmixed_mle)
summary(respmixed_wle)
summary(respmixed_map)
summary(respmixed_eap)
summary(respmixed_rob)
# }
Run the code above in your browser using DataLab