Learn R Programming

PPtree (version 2.3.0)

PP.optimize: Find optimal projection by maximizing selected PP index

Description

Find optimal projection using PP index.

Usage

PP.optimize.random(PPmethod, projdim, data, class, std=TRUE, cooling=0.99, temp=1, r=NULL, lambda=NULL, weight=TRUE, ...) PP.optimize.anneal(PPmethod, projdim, data, class, std=TRUE, cooling=0.999, temp=1, energy=0.01, r=NULL, lambda=NULL, weight=TRUE, ...) PP.optimize.Huber(PPmethod, projdim, data, class, std=TRUE, cooling=0.99, temp=1, r=NULL, lambda=NULL, weight=TRUE, ...) PP.optimize.plot(PP.opt, data, class, std=TRUE)

Arguments

PPmethod
Selected PP index

``LDA" - LDA index

``Lp" - Lp index;

``PDA" - PDA index

projdim
dimension of projection that you want to find
data
data without class information
class
class information
std
decide whether data will be standardized or not before applying projection pursuit
weight
weight flag using in LDA index
cooling
parameter for optimization
temp
inital temperature for optimization
energy
parameter for simulated annealing optimization
r
a parameter for $L_r$ index
lambda
a parameter for PDA index
PP.opt
the optimal projection
...
...

Value

index.best
PP index for optimal projected data
proj.best
optimal projection

References

Lee E., Cook D., and Klinke, S. (2002) Projection Pursuit indices for supervised classification

See Also

{PPindex.class}

Examples

Run this code
data(iris)

PP.opt<-PP.optimize.random("LDA",1,iris[,1:4],iris[,5],cooling=0.999,temp=1)

PP.opt$index.best
PP.optimize.plot(PP.opt,iris[,1:4],iris[,5])


PP.opt<-PP.optimize.anneal("LDA",1,iris[,1:4],iris[,5],cooling=0.999,temp=1,energy=0.01)
PP.opt$index.best

PP.optimize.plot(PP.opt,iris[,1:4],iris[,5])


PP.opt<-PP.optimize.Huber("LDA",2,iris[,1:4],iris[,5],cooling=0.999,r=1)
PP.opt$index.best
PP.optimize.plot(PP.opt,iris[,1:4],iris[,5])


Run the code above in your browser using DataLab