Learn R Programming

PRISMA (version 0.2-7)

estimateDimension: Estimate Inner Dimension

Description

Matrix factorization methods compress the original data matrix \(A \in R^{f,N}\) with \(f\) features and \(N\) samples into two parts, namely \(A = B C\) with \(B \in R^{f,k}, C\in R^{k, N}\). The function estimateDimension estimates \(k\) based on a noise model estimated from a scrambled version of the original data matrix.

Usage

estimateDimension(prismaData, alpha = 0.05, nScrambleSamples = NULL)

Arguments

prismaData

A prismaData object loaded via loadPrismaData

alpha

Error probability for confidence intervals

nScrambleSamples

The number of scrambled samples that should be used to estimate the noise model. NULL means to use the complete data set.

Value

estDim

prismaDimension object that can be printed and plotted.

References

R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3):276 -- 280, 1986.

Examples

Run this code
# NOT RUN {
# please see the vingette for examles
# }

Run the code above in your browser using DataLab