# Load example datasets
data("psdata")
data("psdata_bin_prospective_fp")
data("psdata_bin_retrospective_fp")
# Define the outcome model formula.
out.formula <- Y ~ cov1 + cov2 + cov3 + cov4 + cov5 + cov6
# Extract the outcome vector from the retrospective data.
y <- psdata_bin_retrospective_fp$Y
# Use only the observations in treatment group 1 as the training data.
datain <- psdata_bin_retrospective_fp[psdata_bin_retrospective_fp$trt == 1, ]
# Fit the outcome regression model via OUTmethod_SW.
# By default, out.method = "glm" and family = "gaussian" are used.
outfit <- OUTmethod_SW(out.formula = out.formula, y = y, datain = datain,
dataout = psdata_bin_retrospective_fp)
# Print the predicted outcome vector on dataout.
cat("Predicted outcomes (first 10 values):\n")
print(head(outfit$m.est, 10))
# Print the estimated coefficient vector from the GLM.
cat("\nEstimated coefficients (gamma.h):\n")
print(outfit$gamma.h)
Run the code above in your browser using DataLab