if (FALSE) {
data(redstart)
data(paurelia)
data(songsparrow)
## Gompertz
m1 <- pva(redstart, "gompertz", c(5,10))
m2 <- pva(redstart, gompertz("poisson"), c(5,10))
m3 <- pva(redstart, gompertz("normal"), c(5,10))
m1na <- pva(paurelia, "gompertz", c(5,10))
m2na <- pva(paurelia, gompertz("poisson"), c(5,10))
m3na <- pva(paurelia, gompertz("normal"), c(5,10))
m1x <- pva(redstart, gompertz("normal"), 5)
m2x <- pva(redstart, gompertz("normal", fixed=c(tau=0.1)), 5)
## Ricker
m1 <- pva(redstart, "ricker", c(5,10))
m2 <- pva(redstart, ricker("poisson"), c(5,10))
m3 <- pva(redstart, ricker("normal"), c(5,10))
m1na <- pva(paurelia, "ricker", c(5,10))
m2na <- pva(paurelia, ricker("poisson"), c(5,10))
m3na <- pva(paurelia, ricker("normal"), c(5,10))
m1x <- pva(redstart, ricker("normal"), 5)
m2x <- pva(redstart, ricker("normal", fixed=c(tau=0.1)), 5)
## Theta-Logistic
m1 <- pva(songsparrow, "thetalogistic", c(5,10))
m2 <- pva(songsparrow, thetalogistic("poisson"), c(2,5))
m3 <- pva(songsparrow, thetalogistic("normal"), c(2,5))
m1x <- pva(songsparrow,
thetalogistic_D("normal", fixed=c(sigma2.d=0.66)), 5)
m2x <- pva(songsparrow,
thetalogistic_D("none", fixed=c(theta=1, sigma2.d=0.66)), 10)
m2x
summary(m2x)
coef(m2x)
vcov(m2x)
confint(m2x)
plot(m2x)
plot(diagn_scale(m2x))
}
Run the code above in your browser using DataLab