Learn R Programming

PairedData (version 1.1.1)

bonettseier.Var.test: Bonett-Seier test of scale for paired samples

Description

Robust test of scale for paired samples based on the mean absolute deviations.

Usage

bonettseier.Var.test(x, ...)

# S3 method for default bonettseier.Var.test(x, y = NULL, alternative = c("two.sided", "less", "greater"), omega = 1, conf.level = 0.95,...)

# S3 method for paired bonettseier.Var.test(x, ...)

Arguments

x

first sample or object of class paired.

y

second sample.

alternative

alternative hypothesis.

omega

a priori ratio of means absolute deviations.

conf.level

confidence level.

further arguments to be passed to or from methods.

Value

A list with class "htest" containing the following components:

statistic

the value of the z-statistic.

p.value

the p-value for the test.

conf.int

a confidence interval for the ratio of means absolute deviations appropriate to the specified alternative hypothesis.

estimate

the estimated means absolute deviations.

null.value

the specified hypothesized value of the ratio of means absolute deviations.

alternative

a character string describing the alternative hypothesis.

method

a character string indicating what type of test was performed.

data.name

a character string giving the name(s) of the data.

References

Bonett, D.G. and Seier E. (2003) Statistical inference for a ratio of dispersions using paired samples. Journal of Educational and Behavioral Statistics, 28, 21-30.

See Also

Var.test, grambsch.Var.test

Examples

Run this code
# NOT RUN {
z<-rnorm(20)
x<-rnorm(20)+z
y<-(rnorm(20)+z)*2
bonettseier.Var.test(x,y)

data(anscombe2)
p<-with(anscombe2,paired(X1,Y1))
bonettseier.Var.test(p)
# }

Run the code above in your browser using DataLab