Learn R Programming

ParallelPC (version 1.2)

IDA_parallel: Estimate Total Causal Effects using the IDA_parallel Algorithm

Description

This is the parallelised version of the IDA (stable) algorithm in the pcalg package.

Usage

IDA_parallel(datacsv, cause, effect, pcmethod, alpha, num.cores, mem.efficient = FALSE)

Arguments

datacsv
The dataset in csv format.
cause
The number of integer positions of the cause variables in the dataset.
effect
The number of integer positions of the target variables in the dataset.
pcmethod
Character string specifying method; the default, "parallel", will use the parallelised method for learning the skeleton of the graph, see skeleton_parallel.
alpha
significance level (number in (0; 1) for the individual conditional independence tests.
num.cores
The numbers of cores CPU to run the algorithm
mem.efficient
If TRUE, uses less amount of memory at any time point while running the algorithm

Value

A matrix that shows the causal effects (minimum of all possible effects) of the causes (columns) on the effects (rows)

References

Marloes H Maathuis, Markus Kalisch, Peter Buhlmann, et al. Estimating high-dimensional intervention effects from observational data. The Annals of Statistics, 37(6A):3133-3164,2009.

Examples

Run this code
##########################################
## Using IDA_parallel without mem.efficeient
##########################################
library(bnlearn)
library(pcalg)
library(parallel)
data("gmI")
datacsv <- cov(gmI$x)
IDA_parallel(datacsv,1:2,3:4,"parallel",0.01, 2)

##########################################
## Using IDA_parallel with mem.efficeient
##########################################
library(bnlearn)
library(pcalg)
library(parallel)
data("gmI")
datacsv <- cov(gmI$x)
IDA_parallel(datacsv,1:2,3:4,"parallel",0.01, 2, TRUE)

Run the code above in your browser using DataLab