Learn R Programming

ParallelPC (version 1.2)

IDA_stable: Estimate Total Causal Effects

Description

This the stable version (using stable-PC for structure learning) of the IDA algorithm in the pcalg package.

Usage

IDA_stable(datacsv, cause, effect, pcmethod, alpha)

Arguments

datacsv
The dataset in csv format with rows are samples and columns are variables
cause
The number of integer positions of the cause variables in the dataset
effect
The number of integer positions of the target variables in the dataset.
pcmethod
Character string specifying method; the default, "stable", provides an order-independent skeleton. See Colombo, 2014.
alpha
significance level (number in (0; 1) for the individual conditional independence tests.

Value

A matrix that shows the causal effects (minimum of all possible effects) of the causes (columns) on the effects (rows).

References

1. Marloes H Maathuis, Markus Kalisch, Peter Buhlmann, et al. Estimating high-dimensional intervention effects from observational data. The Annals of Statistics, 37(6A):3133-3164,2009.

2. Diego Colombo and Marloes H Maathuis. Order-independent constraint-based causal structure learning. The Journal of Machine Learning Research, 15(1):3741-3782, 2014.

Examples

Run this code
##########################################
## Using IDA_stable
##########################################
library(pcalg)
data("gmI")
datacsv <- cov(gmI$x)
IDA_stable(datacsv,1:2,3:4,"stable",0.01)

Run the code above in your browser using DataLab