Learn R Programming

ParallelPC (version 1.2)

jointIDA_parallel: Estimate Total Causal Effects of Joint Interventions

Description

This is the parallelised version of the IDA (stable) algorithm in the pcalg package.

Usage

jointIDA_parallel(datacsv, cause, effect, pcmethod = "stable", alpha, num.cores = 1, mem.efficient = FALSE, technique = c("RRC", "MCD"))

Arguments

datacsv
The dataset in csv format with rows are samples and columns are variables.
cause
The number of integer positions of the intervention variables in the dataset.
effect
the integer position of the target variable in the dataset.
pcmethod
Character string specifying the method of the PC algorithm, e.g. stable for stable-PC, and parallel for parallel-PC.
alpha
significance level (number in (0; 1) for the conditional independence tests.
num.cores
The numbers of cores CPU to run the algorithm
mem.efficient
If TRUE, uses less amount of memory at any time point while running the algorithm
technique
The character string specifying the technique that will be used to estimate the total joint causal effects in the pcalg package. RRC for Recursive regression for causal effects MCD for Modifying the Cholesky decomposition

Value

A matrix that shows the causal effects of the causes (rows) on the effect. Different columns show different possible causal effect values.

Examples

Run this code
##########################################
## Using IDA_parallel without mem.efficeient
##########################################
library(bnlearn)
library(pcalg)
library(parallel)
data("gmI")
datacsv <- cov(gmI$x)
jointIDA_parallel(datacsv,1:2,3, pcmethod="parallel",0.01, 2, technique="RRC")

##########################################
## Using IDA_parallel with mem.efficeient
##########################################
library(bnlearn)
library(pcalg)
library(parallel)
data("gmI")
datacsv <- cov(gmI$x)
jointIDA_parallel(datacsv,1:2,3, pcmethod="parallel",0.01, 2, TRUE, technique="RRC")

Run the code above in your browser using DataLab