Learn R Programming

ParallelPC (version 1.2)

skeleton_parallel: Estimate (Initial) Skeleton of a DAG.

Description

This is the parallelised version of the skeleton function in the pcalg package.

Usage

skeleton_parallel(suffStat, indepTest, alpha, labels, p, method = c("parallel"), mem.efficient = FALSE, workers, num_workers, m.max = Inf, fixedGaps = NULL, fixedEdges = NULL, NAdelete = TRUE, verbose = FALSE)

Arguments

suffStat
Sufficient statistics: List containing all necessary elements for the conditional independence decisions in the function indepTest.
indepTest
Predefined function for testing conditional independence. The function is internally called as indepTest(x,y,S,suffStat) and tests conditional independence of x and y given S. Here, x and y are variables, and S is a (possibly empty) vector of variables (all variables are denoted by their column numbers in the adjacency matrix). suffStat is a list containing all relevant elements for the conditional independence decisions. The return value of indepTest is the p-value of the test for conditional independence.
alpha
significance level (number in (0; 1) for the individual conditional independence tests.
labels
(optional) character vector of variable (or "node") names. Typically preferred to specifying p.
p
(optional) number of variables (or nodes). May be specified if labels are not, in which case labels is set to 1:p.
method
Character string specifying method; the default, "parallel" provides an efficient skeleton, see skeleton_parallel.
mem.efficient
Uses less amount of memory at any time point while running the algorithm
workers
Creates a set of copies of R running in parallel and communicating over sockets.
num_workers
The numbers of cores CPU as numbers of workers to run the algorithm
m.max
Maximal size of the conditioning sets that are considered in the conditional independence tests.
fixedGaps
A logical matrix of dimension p*p. If entry [i,j] or [j,i] (or both) are TRUE, the edge i-j is removed before starting the algorithm. Therefore, this edge is guaranteed to be absent in the resulting graph.
fixedEdges
A logical matrix of dimension p*p. If entry [i,j] or [j,i] (or both) are TRUE, the edge i-j is never considered for removal. Therefore, this edge is guaranteed to be present in the resulting graph.
NAdelete
logical needed for the case indepTest(*) returns NA. If it is true, the corresponding edge is deleted, otherwise not.
verbose
if TRUE, detailed output is provided.

Value

An object of class "pcAlgo" (see pcAlgo in the pcalg package) containing an estimate of the skeleton of the underlying DAG, the conditioning sets (sepset) that led to edge removals and several other parameters.

Examples

Run this code
##########################################
## Using skeleton_parallel without mem.efficeient
##########################################
library(pcalg)
library(parallel)
data("gmG")
p<-ncol(gmG$x)
suffStat<-list(C=cor(gmG$x),n=nrow(gmG$x))
skeleton_parallel(suffStat,indepTest=gaussCItest,p=p,method="parallel",alpha=0.01,num_workers=2)

##########################################
## Using skeleton_parallel with mem.efficeient
##########################################
library(pcalg)
library(parallel)
data("gmG")
p<-ncol(gmG$x)
suffStat<-list(C=cor(gmG$x),n=nrow(gmG$x))
skeleton_parallel(suffStat,indepTest=gaussCItest,p=p,method="parallel",
alpha=0.01,num_workers=2,mem.efficient=TRUE)

Run the code above in your browser using DataLab