Learn R Programming

⚠️There's a newer version (1.4) of this package.Take me there.

Patterns

A modeling tool dedicated to biological network modeling to decipher Biological Networks with Patterned Heterogeneous (e.g. multiOmics) Measurements

Frédéric Bertrand and Myriam Maumy-Bertrand

It is designed to work with patterned data. Famous examples of problems related to patterned data are:

  • recovering signals in networks after a stimulation (cascade network reverse engineering),
  • analysing periodic signals.

It allows for single or joint modeling of, for instance, genes and proteins.

  • It starts with the selection of the actors that will be the used in the reverse engineering upcoming step. An actor can be included in that selection based on its differential effects (for instance gene expression or protein abundance) or on its time course profile.
  • Wrappers for actors clustering functions and cluster analysis are provided.
  • It also allows reverse engineering of biological networks taking into account the observed time course patterns of the actors. Interactions between clusters of actors can be set by the user. Any number of clusters can be activated at a single time.
  • Many inference functions are provided with the Patterns package and dedicated to get specific features for the inferred network such as sparsity, robust links, high confidence links or stable through resampling links.
    • lasso, from the lars package
    • lasso, from the glmnet package. An unweighted and a weighted version of the algorithm are available
    • spls, from the spls package
    • elasticnet, from the elasticnet package
    • stability selection, from the c060 package implementation of stability selection
    • weighted stability selection, a new weighted version of the c060 package implementation of stability selection that I created for the package
    • robust, lasso from the lars package with light random Gaussian noise added to the explanatory variables
    • selectboost, from the selectboost package. The selectboost algorithm looks for the more stable links against resampling that takes into account the correlated structure of the predictors
    • weighted selectboost, a new weighted version of the selectboost.
  • Some simulation and prediction tools are also available for cascade networks.
  • Examples of use with microarray or RNA-Seq data are provided.

The weights are viewed as a penalty factors in the penalized regression model: it is a number that multiplies the lambda value in the minimization problem to allow differential shrinkage, Friedman et al. 2010, equation 1 page 3. If equal to 0, it implies no shrinkage, and that variable is always included in the model. Default is 1 for all variables. Infinity means that the variable is excluded from the model. Note that the weights are rescaled to sum to the number of variables.

A word for those that have been using our seminal work, the Cascade package that we created several years ago and that was a very efficient network reverse engineering tool for cascade networks (Jung, N., Bertrand, F., Bahram, S., Vallat, L., and Maumy-Bertrand, M. (2014), https://doi.org/10.1093/bioinformatics/btt705, https://cran.r-project.org/package=Cascade, https://github.com/fbertran/Cascade and https://fbertran.github.io/Cascade/).

The Patterns package is more than (at least) a threeway major extension of the Cascade package :

  • any number of groups can be used whereas in the Cascade package only 1 group for each timepoint could be created, which prevented the users to create homogeneous clusters of genes in datasets that featured more than a few dozens of genes.
  • custom $F$ matrices shapes whereas in the Cascade package only 1 shape was provided:
    • interaction between groups
    • custom design of inner cells of the $F$ matrix
  • the custom $F$ matrices allow to deal with heteregeneous networks with several kinds of actors such as mixing genes and proteins in a single network to perform joint inference.
  • about nine inference algorithms are provided, whereas 1 (lasso) in Cascade.

Hence the Patterns package should be viewed more as a completely new modelling tools than as an extension of the Cascade package.

This website and these examples were created by F. Bertrand and M. Maumy-Bertrand.

Installation

You can install the released version of Patterns from CRAN with:

install.packages("Patterns")

You can install the development version of Patterns from github with:

devtools::install_github("fbertran/Patterns")

Examples

Data management

Import Cascade Data (repeated measurements on several subjects) from the CascadeData package and turn them into a micro array object. The second line makes sure the CascadeData package is installed.

library(Patterns)
if(!require(CascadeData)){install.packages("CascadeData")}
data(micro_US)
micro_US<-as.micro_array(micro_US[1:100,],time=c(60,90,210,390),subject=6)
str(micro_US)
#> Formal class 'micro_array' [package "Patterns"] with 7 slots
#>   ..@ microarray: num [1:100, 1:24] 103.2 26 70.7 213.7 13.7 ...
#>   .. ..- attr(*, "dimnames")=List of 2
#>   .. .. ..$ : chr [1:100] "1007_s_at" "1053_at" "117_at" "121_at" ...
#>   .. .. ..$ : chr [1:24] "N1_US_T60" "N1_US_T90" "N1_US_T210" "N1_US_T390" ...
#>   ..@ name      : chr [1:100] "1007_s_at" "1053_at" "117_at" "121_at" ...
#>   ..@ gene_ID   : num 0
#>   ..@ group     : num 0
#>   ..@ start_time: num 0
#>   ..@ time      : num [1:4] 60 90 210 390
#>   ..@ subject   : num 6

Get a summay and plots of the data:

summary(micro_US)
#>    N1_US_T60        N1_US_T90        N1_US_T210    
#>  Min.   :  12.2   Min.   :  12.9   Min.   :   1.5  
#>  1st Qu.: 177.7   1st Qu.: 198.7   1st Qu.: 189.0  
#>  Median : 513.0   Median : 499.4   Median : 608.5  
#>  Mean   :1386.6   Mean   :1357.7   Mean   :1450.4  
#>  3rd Qu.:1912.3   3rd Qu.:1883.4   3rd Qu.:2050.2  
#>  Max.   :6348.4   Max.   :6507.3   Max.   :6438.5  
#>    N1_US_T390       N2_US_T60        N2_US_T90     
#>  Min.   :  10.1   Min.   :  16.7   Min.   :   3.4  
#>  1st Qu.: 196.7   1st Qu.: 212.4   1st Qu.: 185.7  
#>  Median : 541.2   Median : 584.1   Median : 501.5  
#>  Mean   :1331.2   Mean   :1381.9   Mean   :1345.4  
#>  3rd Qu.:1646.2   3rd Qu.:1616.2   3rd Qu.:1830.5  
#>  Max.   :6351.4   Max.   :6149.3   Max.   :6090.8  
#>    N2_US_T210       N2_US_T390       N3_US_T60     
#>  Min.   :   5.5   Min.   :   6.1   Min.   :   1.9  
#>  1st Qu.: 214.7   1st Qu.: 230.1   1st Qu.: 187.4  
#>  Median : 596.0   Median : 601.8   Median : 611.4  
#>  Mean   :1410.5   Mean   :1403.7   Mean   :1365.4  
#>  3rd Qu.:2005.8   3rd Qu.:1901.7   3rd Qu.:1855.2  
#>  Max.   :6160.6   Max.   :6143.1   Max.   :6636.6  
#>    N3_US_T90        N3_US_T210       N3_US_T390    
#>  Min.   :  10.3   Min.   :   3.3   Min.   :   6.6  
#>  1st Qu.: 194.6   1st Qu.: 177.8   1st Qu.: 222.6  
#>  Median : 576.2   Median : 552.2   Median : 593.7  
#>  Mean   :1381.2   Mean   :1310.1   Mean   :1427.1  
#>  3rd Qu.:2040.2   3rd Qu.:1784.5   3rd Qu.:2131.7  
#>  Max.   :6515.5   Max.   :6530.4   Max.   :6177.2  
#>    N4_US_T60        N4_US_T90        N4_US_T210    
#>  Min.   :  20.2   Min.   :  15.6   Min.   :  19.8  
#>  1st Qu.: 199.3   1st Qu.: 215.4   1st Qu.: 207.0  
#>  Median : 610.8   Median : 614.0   Median : 544.9  
#>  Mean   :1505.1   Mean   :1526.7   Mean   :1401.6  
#>  3rd Qu.:2198.1   3rd Qu.:2168.9   3rd Qu.:1831.2  
#>  Max.   :6986.2   Max.   :7148.0   Max.   :6820.0  
#>    N4_US_T390       N5_US_T60        N5_US_T90     
#>  Min.   :   9.3   Min.   :   3.4   Min.   :  10.0  
#>  1st Qu.: 197.8   1st Qu.: 213.2   1st Qu.: 209.8  
#>  Median : 590.7   Median : 609.4   Median : 561.3  
#>  Mean   :1458.8   Mean   :1498.2   Mean   :1424.8  
#>  3rd Qu.:1984.8   3rd Qu.:2008.7   3rd Qu.:1906.5  
#>  Max.   :6762.3   Max.   :7268.2   Max.   :6857.8  
#>    N5_US_T210       N5_US_T390       N6_US_T60     
#>  Min.   :  10.7   Min.   :  16.5   Min.   :  13.0  
#>  1st Qu.: 202.0   1st Qu.: 208.2   1st Qu.: 207.5  
#>  Median : 555.6   Median : 570.5   Median : 516.2  
#>  Mean   :1394.1   Mean   :1435.3   Mean   :1412.9  
#>  3rd Qu.:1923.9   3rd Qu.:1867.8   3rd Qu.:2037.4  
#>  Max.   :6574.0   Max.   :6896.6   Max.   :6898.1  
#>    N6_US_T90        N6_US_T210       N6_US_T390    
#>  Min.   :   6.6   Min.   :   3.8   Min.   :  14.4  
#>  1st Qu.: 198.6   1st Qu.: 203.9   1st Qu.: 195.8  
#>  Median : 530.6   Median : 578.0   Median : 580.0  
#>  Mean   :1388.3   Mean   :1416.5   Mean   :1360.8  
#>  3rd Qu.:1889.8   3rd Qu.:2030.8   3rd Qu.:1872.6  
#>  Max.   :6749.4   Max.   :6490.0   Max.   :6780.2

plot(micro_US)

Gene selection

There are several functions to carry out gene selection before the inference. They are detailed in the vignette of the package.

Data simulation

Let's simulate some cascade data and then do some reverse engineering.

We first design the F matrix for $T_i=4$ times and $Ngrp=4$ groups. The Fmatobject is an array of sizes $(T_i,T-i,Ngrp^2)=(4,4,16)$.

Ti<-4
Ngrp<-4

Fmat=array(0,dim=c(Ti,Ti,Ngrp^2))

for(i in 1:(Ti^2)){
  if(((i-1) %% Ti) > (i-1) %/% Ti){
    Fmat[,,i][outer(1:Ti,1:Ti,function(x,y){0<(x-y) & (x-y)<2})]<-1
    }
}

The Patterns function CascadeFinit is an utility function to easily define such an F matrix.

Fbis=Patterns::CascadeFinit(Ti,Ngrp,low.trig=FALSE)
str(Fbis)
#>  num [1:4, 1:4, 1:16] 0 0 0 0 0 0 0 0 0 0 ...

Check if the two matrices Fmat and Fbis are identical.

print(all(Fmat==Fbis))
#> [1] TRUE

End of F matrix definition.

Fmat[,,3]<-Fmat[,,3]*0.2
Fmat[3,1,3]<-1
Fmat[4,2,3]<-1
Fmat[,,4]<-Fmat[,,3]*0.3
Fmat[4,1,4]<-1
Fmat[,,8]<-Fmat[,,3]

We set the seed to make the results reproducible and draw a scale free random network.

set.seed(1)
Net<-Patterns::network_random(
  nb=100,
  time_label=rep(1:4,each=25),
  exp=1,
  init=1,
  regul=round(rexp(100,1))+1,
  min_expr=0.1,
  max_expr=2,
  casc.level=0.4
)
Net@F<-Fmat
str(Net)
#> Formal class 'network' [package "Patterns"] with 6 slots
#>   ..@ network: num [1:100, 1:100] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..@ name   : chr [1:100] "gene 1" "gene 2" "gene 3" "gene 4" ...
#>   ..@ F      : num [1:4, 1:4, 1:16] 0 0 0 0 0 0 0 0 0 0 ...
#>   ..@ convF  : num [1, 1] 0
#>   ..@ convO  : num 0
#>   ..@ time_pt: int [1:4] 1 2 3 4

Plot the simulated network.

Patterns::plot(Net, choice="network")

If a gene clustering is known, it can be used as a coloring scheme.

plot(Net, choice="network", gr=rep(1:4,each=25))

Plot the F matrix, for low dimensional F matrices.

plot(Net, choice="F")

Plot the F matrix using the pixmap package, for high dimensional F matrices.

plot(Net, choice="Fpixmap")

We simulate gene expression according to the network that was previously drawn

set.seed(1)
M <- Patterns::gene_expr_simulation(
  network=Net,
  time_label=rep(1:4,each=25),
  subject=5,
  peak_level=200,
  act_time_group=1:4)
str(M)
#> Formal class 'micro_array' [package "Patterns"] with 7 slots
#>   ..@ microarray: num [1:100, 1:20] 86.1 -146.8 228.3 505.1 -36.6 ...
#>   .. ..- attr(*, "dimnames")=List of 2
#>   .. .. ..$ : chr [1:100] "gene 1" "gene 2" "gene 3" "gene 4" ...
#>   .. .. ..$ : chr [1:20] "log(S/US) : P1T1" "log(S/US) : P1T2" "log(S/US) : P1T3" "log(S/US) : P1T4" ...
#>   ..@ name      : chr [1:100] "gene 1" "gene 2" "gene 3" "gene 4" ...
#>   ..@ gene_ID   : num 0
#>   ..@ group     : int [1:100] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..@ start_time: num 0
#>   ..@ time      : int [1:4] 1 2 3 4
#>   ..@ subject   : num 5

Get a summay and plots of the simulated data:

summary(M)
#>  log(S/US) : P1T1   log(S/US) : P1T2    log(S/US) : P1T3  
#>  Min.   :-486.823   Min.   :-1962.641   Min.   :-1923.74  
#>  1st Qu.: -54.618   1st Qu.:  -23.300   1st Qu.:  -71.99  
#>  Median :  -8.319   Median :    0.000   Median :   -3.85  
#>  Mean   :   8.799   Mean   :   22.064   Mean   :   20.72  
#>  3rd Qu.:  69.340   3rd Qu.:    9.707   3rd Qu.:   33.00  
#>  Max.   : 942.229   Max.   : 1616.469   Max.   : 2899.61  
#>  log(S/US) : P1T4   log(S/US) : P2T1  log(S/US) : P2T2  
#>  Min.   :-3391.76   Min.   :-359.82   Min.   :-1126.13  
#>  1st Qu.:  -58.69   1st Qu.: -39.27   1st Qu.:  -14.15  
#>  Median :    1.53   Median :  12.54   Median :    0.00  
#>  Mean   :   19.82   Mean   :  21.35   Mean   :   20.02  
#>  3rd Qu.:   69.45   3rd Qu.:  73.02   3rd Qu.:   28.54  
#>  Max.   : 3231.17   Max.   : 451.61   Max.   :  946.22  
#>  log(S/US) : P2T3   log(S/US) : P2T4   log(S/US) : P3T1  
#>  Min.   :-600.757   Min.   :-797.980   Min.   :-430.696  
#>  1st Qu.: -49.998   1st Qu.: -73.700   1st Qu.: -65.939  
#>  Median :  -7.749   Median :  -9.760   Median :   1.392  
#>  Mean   :  23.579   Mean   :   8.361   Mean   :   4.032  
#>  3rd Qu.:  67.216   3rd Qu.:  62.297   3rd Qu.:  62.391  
#>  Max.   :1869.077   Max.   : 935.321   Max.   : 514.510  
#>  log(S/US) : P3T2    log(S/US) : P3T3    log(S/US) : P3T4   
#>  Min.   :-1003.575   Min.   :-718.3926   Min.   :-1211.592  
#>  1st Qu.:   -3.637   1st Qu.: -43.3783   1st Qu.:  -61.300  
#>  Median :    0.000   Median :  -0.3233   Median :   -4.124  
#>  Mean   :   11.431   Mean   :  19.7553   Mean   :    5.993  
#>  3rd Qu.:   36.945   3rd Qu.:  69.6650   3rd Qu.:   62.634  
#>  Max.   :  752.066   Max.   :1497.5790   Max.   : 1296.563  
#>  log(S/US) : P4T1   log(S/US) : P4T2     log(S/US) : P4T3   
#>  Min.   :-451.370   Min.   :-1113.1785   Min.   :-1506.536  
#>  1st Qu.: -44.107   1st Qu.:   -8.8769   1st Qu.:  -48.512  
#>  Median :   7.193   Median :    0.0000   Median :    4.243  
#>  Mean   :  16.034   Mean   :    0.9469   Mean   :  -28.544  
#>  3rd Qu.:  62.840   3rd Qu.:   33.2306   3rd Qu.:   46.374  
#>  Max.   : 657.434   Max.   :  844.0070   Max.   :  694.220  
#>  log(S/US) : P4T4  log(S/US) : P5T1   log(S/US) : P5T2 
#>  Min.   :-446.40   Min.   :-747.865   Min.   :-862.59  
#>  1st Qu.: -56.95   1st Qu.: -78.166   1st Qu.: -15.10  
#>  Median :   3.71   Median :  -8.900   Median :   0.00  
#>  Mean   :  28.74   Mean   :  -7.693   Mean   :  66.20  
#>  3rd Qu.:  64.89   3rd Qu.:  45.926   3rd Qu.:  31.74  
#>  Max.   :1368.62   Max.   : 960.419   Max.   :1899.57  
#>  log(S/US) : P5T3    log(S/US) : P5T4   
#>  Min.   :-1493.607   Min.   :-1420.740  
#>  1st Qu.:  -59.853   1st Qu.:  -32.799  
#>  Median :   -2.776   Median :    4.008  
#>  Mean   :  -13.865   Mean   :  -12.332  
#>  3rd Qu.:   40.324   3rd Qu.:   59.892  
#>  Max.   :  770.655   Max.   :  489.916

plot(M)

Network inferrence

We infer the new network using subjectwise leave one out cross-validation (default setting): all measurements from the same subject are removed from the dataset). The inference is carried out with a general Fshape.

Net_inf_P <- Patterns::inference(M, cv.subjects=TRUE)
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.01
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00522
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0034
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00235
#> We are at step :  5
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00181
#> We are at step :  6
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00142
#> We are at step :  7
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00117
#> We are at step :  8
#> Computing Group (out of 4) : 
#>  1.........................
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00098

Plot of the inferred F matrix

plot(Net_inf_P, choice="F")

Heatmap of the inferred coefficients of the Omega matrix

stats::heatmap(Net_inf_P@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

Default values fot the $F$ matrices. The Finit matrix (starting values for the algorithm). In our case, the Finitobject is an array of sizes $(T_i,T-i,Ngrp^2)=(4,4,16)$.

Ti<-4;
ngrp<-4
nF<-ngrp^2
Finit<-array(0,c(Ti,Ti,nF))	
              for(ii in 1:nF){    
                if((ii%%(ngrp+1))==1){
                  Finit[,,ii]<-0
                } else {
                  Finit[,,ii]<-cbind(rbind(rep(0,Ti-1),diag(1,Ti-1)),rep(0,Ti))+rbind(cbind(rep(0,Ti-1),diag(1,Ti-1)),rep(0,Ti))
                }
              }

The Fshape matrix (default shape for F matrix the algorithm). Any interaction between groups and times are permitted except the retro-actions (a group on itself, or an action at the same time for an actor on another one).

Fshape<-array("0",c(Ti,Ti,nF)) 
for(ii in 1:nF){  
  if((ii%%(ngrp+1))==1){
    Fshape[,,ii]<-"0"
  } else {
    lchars <- paste("a",1:(2*Ti-1),sep="")
    tempFshape<-matrix("0",Ti,Ti)
    for(bb in (-Ti+1):(Ti-1)){
      tempFshape<-replaceUp(tempFshape,matrix(lchars[bb+Ti],Ti,Ti),-bb)
    }
    tempFshape <- replaceBand(tempFshape,matrix("0",Ti,Ti),0)
    Fshape[,,ii]<-tempFshape
  }
}

Any other form can be used. A "0" coefficient is missing from the model. It allows testing the best structure of an "F" matrix and even performing some significance tests of hypothses on the structure of the $F$ matrix.

The IndicFshape function allows to design custom F matrix for cascade networks with equally spaced measurements by specifying the zero and non zero $F_{ij}$ cells of the $F$ matrix. It is useful for models featuring several clusters of actors that are activated at the time. Let's define the following indicatrix matrix (action of all groups on each other, which is not a possible real modeling setting and is only used as an example):

TestIndic=matrix(!((1:(Ti^2))%%(ngrp+1)==1),byrow=TRUE,ngrp,ngrp)
TestIndic
#>       [,1]  [,2]  [,3]  [,4]
#> [1,] FALSE  TRUE  TRUE  TRUE
#> [2,]  TRUE FALSE  TRUE  TRUE
#> [3,]  TRUE  TRUE FALSE  TRUE
#> [4,]  TRUE  TRUE  TRUE FALSE

For that choice, we get those init and shape $F$ matrices.

IndicFinit(Ti,ngrp,TestIndic)
#> , , 1
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> , , 2
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 3
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 4
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 5
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 6
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> , , 7
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 8
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 9
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 10
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 11
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> , , 12
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 13
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 14
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 15
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    1    0    0    0
#> [3,]    1    1    0    0
#> [4,]    1    1    1    0
#> 
#> , , 16
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    0
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
IndicFshape(Ti,ngrp,TestIndic)
#> , , 1
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "0"  "0"  "0"  "0" 
#> [3,] "0"  "0"  "0"  "0" 
#> [4,] "0"  "0"  "0"  "0" 
#> 
#> , , 2
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 3
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 4
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 5
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 6
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "0"  "0"  "0"  "0" 
#> [3,] "0"  "0"  "0"  "0" 
#> [4,] "0"  "0"  "0"  "0" 
#> 
#> , , 7
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 8
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 9
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 10
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 11
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "0"  "0"  "0"  "0" 
#> [3,] "0"  "0"  "0"  "0" 
#> [4,] "0"  "0"  "0"  "0" 
#> 
#> , , 12
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 13
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 14
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 15
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "a1" "0"  "0"  "0" 
#> [3,] "a2" "a1" "0"  "0" 
#> [4,] "a3" "a2" "a1" "0" 
#> 
#> , , 16
#> 
#>      [,1] [,2] [,3] [,4]
#> [1,] "0"  "0"  "0"  "0" 
#> [2,] "0"  "0"  "0"  "0" 
#> [3,] "0"  "0"  "0"  "0" 
#> [4,] "0"  "0"  "0"  "0"

Those $F$ matrices are lower diagonal ones to enforce that an observed value at a given time can only be predicted by a value that was observed in the past only (i.e. neither at the same moment or in the future).

The plotF is convenient to display F matrices. Here are the the displays of the three $F$ matrices we have just introduced.

plotF(Fshape,choice="Fshape")
plotF(CascadeFshape(4,4),choice="Fshape")
plotF(IndicFshape(Ti,ngrp,TestIndic),choice="Fshape")

We now fit the model with an $F$ matrix that is designed for cascade networks.

Specific Fshape

Net_inf_P_S <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4))
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0074
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00314
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0019
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00131
#> We are at step :  5
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00101
#> We are at step :  6
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00081

Plot of the inferred F matrix

plot(Net_inf_P_S, choice="F")

Heatmap of the coefficients of the Omega matrix of the network. They reflect the use of a special $F$ matrix. It is an example of an F matrix specifically designed to deal with cascade networks.

stats::heatmap(Net_inf_P_S@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

There are many fitting functions provided with the Patterns package in order to search for specific features for the inferred network such as sparsity, robust links, high confidence links or stable through resampling links. :

  • LASSO, from the lars package
  • LASSO2, from the glmnet package. An unweighted and a weighted version of the algorithm are available
  • SPLS, from the spls package
  • ELASTICNET, from the elasticnet package
  • stability.c060, from the c060 package implementation of stability selection
  • stability.c060.weighted, a new weighted version of the c060 package implementation of stability selection
  • robust, lasso from the lars package with light random Gaussian noise added to the explanatory variables
  • selectboost.weighted, a new weighted version of the selectboost package implementation of the selectboost algorithm to look for the more stable links against resampling that takes into account the correlated structure of the predictors. If no weights are provided, equal weigths are for all the variables (=non weighted case).
Net_inf_P_Lasso2 <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="LASSO2")
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0069
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00229
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00153
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00114
#> We are at step :  5
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00086

Plot of the inferred F matrix

plot(Net_inf_P_Lasso2, choice="F")

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_Lasso2@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

We create a weighting vector to perform weighted lasso inference.

Weights_Net=slot(Net,"network")
Weights_Net[Net@network!=0]=.1        
Weights_Net[Net@network==0]=1000
Net_inf_P_Lasso2_Weighted <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="LASSO2", priors=Weights_Net)
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0075
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 4e-04

Plot of the inferred F matrix

plot(Net_inf_P_Lasso2_Weighted, choice="F")

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_Lasso2_Weighted@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
Net_inf_P_SPLS <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="SPLS")
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0075
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00229
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00164
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00123
#> We are at step :  5
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00104
#> We are at step :  6
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00088

Plot of the inferred F matrix

plot(Net_inf_P_SPLS, choice="F")

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_SPLS@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
Net_inf_P_ELASTICNET <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="ELASTICNET")
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0074
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00402
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00289
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00223
#> We are at step :  5
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00178
#> We are at step :  6
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00142
#> We are at step :  7
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00121
#> We are at step :  8
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00107
#> We are at step :  9
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00095

Plot of the inferred F matrix

plot(Net_inf_P_ELASTICNET, choice="F")

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_ELASTICNET@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
Net_inf_P_stability <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="stability.c060")
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1mc.cores=2
#>  2mc.cores=2.........................
#>  3mc.cores=2.........................
#>  4mc.cores=2.........................
#> The convergence of the network is (L1 norm) : 0.0042
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1mc.cores=2
#>  2mc.cores=2.........................
#>  3mc.cores=2.........................
#>  4mc.cores=2.........................
#> The convergence of the network is (L1 norm) : 0.00095

Plot of the inferred F matrix

plot(Net_inf_P_stability, choice="F")

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_stability@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
Net_inf_P_StabWeight <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="stability.c060.weighted", priors=Weights_Net)
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1mc.cores=2 
#>  2mc.cores=2 .........................
#>  3mc.cores=2 .........................
#>  4mc.cores=2 .........................
#> The convergence of the network is (L1 norm) : 0.0075
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1mc.cores=2 
#>  2mc.cores=2 .........................
#>  3mc.cores=2 .........................
#>  4mc.cores=2 .........................
#> The convergence of the network is (L1 norm) : 0.00034

Plot of the inferred F matrix

plot(Net_inf_P_StabWeight, choice="F")

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_StabWeight@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
Net_inf_P_Robust <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="robust")
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0069
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00366
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00203
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00142
#> We are at step :  5
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00117
#> We are at step :  6
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00086

Plot of the inferred F matrix

plot(Net_inf_P_Robust, choice="F")

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_Robust@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
Weights_Net_1 <- Weights_Net
Weights_Net_1[,] <- 1
Net_inf_P_SelectBoost <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="selectboost.weighted",priors=Weights_Net_1)
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#> Loading required namespace: SelectBoost
#> 
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.0057
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00174
#> We are at step :  3
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00125
#> We are at step :  4
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00094

#> 
#> Attaching package: 'Patterns'
#> The following object is masked from 'package:igraph':
#> 
#>     compare

Plot of the inferred F matrix

plot(Net_inf_P_SelectBoost, choice="F")

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_SelectBoost@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)
Net_inf_P_SelectBoostWeighted <- Patterns::inference(M, Finit=CascadeFinit(4,4), Fshape=CascadeFshape(4,4), fitfun="selectboost.weighted",priors=Weights_Net)
#> We are at step :  1
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.007
#> We are at step :  2
#> Computing Group (out of 4) : 
#>  1
#>  2.........................
#>  3.........................
#>  4.........................
#> The convergence of the network is (L1 norm) : 0.00047

#> 
#> Attaching package: 'Patterns'
#> The following object is masked from 'package:igraph':
#> 
#>     compare

Plot of the inferred F matrix

plot(Net_inf_P_SelectBoostWeighted, choice="F")

Heatmap of the coefficients of the Omega matrix of the network

stats::heatmap(Net_inf_P_SelectBoostWeighted@network, Rowv = NA, Colv = NA, scale="none", revC=TRUE)

Post inference network analysis

Such an analysis is only required if the model was not fitted using the stability selection or the selectboost algorithm.

Create an animation of the network with increasing cutoffs with an animated .gif format or a html webpage in the working directory.

data(network)
sequence<-seq(0,0.2,length.out=20)
evolution(network,sequence,type.ani = "gif", outdir=getwd())
evolution(network,sequence,type.ani = "html", outdir=getwd())
#> Error in setwd(outdir): impossible de changer de répertoire de travail
#> Error in setwd(outdir): impossible de changer de répertoire de travail

Evolution as .html.

Evolution of some properties of a reverse-engineered network with increasing cut-off values.

We switch to data that were derived from the inferrence of a real biological network and try to detect the optimal cutoff value: the best cutoff value for a network to fit a scale free network. The cutoff was validated only single group cascade networks (number of actors groups = number of timepoints) and for genes dataset. Instead of the cutoff function, manual curation or the stability selection or the selectboost algorithm should be used.

data("networkCascade")
set.seed(1)
cutoff(networkCascade)
#> [1] "This computation may be long"
#> [1] "1/10"
#> [1] "2/10"
#> [1] "3/10"
#> [1] "4/10"
#> [1] "5/10"
#> [1] "6/10"
#> [1] "7/10"
#> [1] "8/10"
#> [1] "9/10"
#> [1] "10/10"
#>  [1] 0.000 0.007 0.423 0.388 0.236 0.631 0.952 0.976 0.825 0.362
#> $p.value
#>  [1] 0.000 0.007 0.423 0.388 0.236 0.631 0.952 0.976 0.825 0.362
#> 
#> $p.value.inter
#>  [1] -0.04643835  0.14848083  0.28125541  0.36247646  0.33538710
#>  [6]  0.60021707  0.92531630  0.98522398  0.79881816  0.37310221
#> 
#> $sequence
#>  [1] 0.00000000 0.04444444 0.08888889 0.13333333 0.17777778
#>  [6] 0.22222222 0.26666667 0.31111111 0.35555556 0.40000000

Analyze the network with a cutoff set to the previouly found 0.133 optimal value.

analyze_network(networkCascade,nv=0.133)
#>     node betweenness degree    output  closeness
#> 1      1           0      3 0.6442821  2.5337730
#> 2      2           8      4 1.3784717  5.4211261
#> 3      3           0      6 1.3308218  6.1428682
#> 4      4           0      9 1.7531528 19.4060065
#> 5      5           0      2 0.6400128  2.5169831
#> 6      6           0      1 0.2725100  3.4520368
#> 7      7           0      0 0.0000000  0.0000000
#> 8      8           0      1 0.1483077 10.4595738
#> 9      9           4      4 0.7969945  3.4810740
#> 10    10          20      7 1.3485173  6.0949803
#> 11    11           0      4 0.8054122 16.2236448
#> 12    12           0     11 2.4624877 10.7417814
#> 13    13           0      0 0.0000000  0.0000000
#> 14    14           0      1 0.1882265  3.8504312
#> 15    15           0      5 1.5808956 13.7135886
#> 16    16          81     24 6.7716649 29.1131750
#> 17    17           0      9 2.0059124 11.2249512
#> 18    18           0      9 1.6083138  6.6506106
#> 19    19           0      0 0.0000000  0.0000000
#> 20    20           0      0 0.0000000  0.0000000
#> 21    21           0      0 0.0000000  0.0000000
#> 22    22           0      0 0.0000000  0.0000000
#> 23    23           0      0 0.0000000  0.0000000
#> 24    24           0      1 0.1607163  0.6320503
#> 25    25           0      0 0.0000000  0.0000000
#> 26    26           0      0 0.0000000  0.0000000
#> 27    27           0      8 3.2710799 13.9045595
#> 28    28           0      2 0.3957891  2.1118782
#> 29    29           0      0 0.0000000  0.0000000
#> 30    30           0      1 0.2255093  0.8868623
#> 31    31           0      0 0.0000000  0.0000000
#> 32    32           0      0 0.0000000  0.0000000
#> 33    33           0      0 0.0000000  0.0000000
#> 34    34           0      0 0.0000000  0.0000000
#> 35    35           0      6 1.4397935  5.6622868
#> 36    36           0      0 0.0000000  0.0000000
#> 37    37           0      0 0.0000000  0.0000000
#> 38    38           0      0 0.0000000  0.0000000
#> 39    39           0      0 0.0000000  0.0000000
#> 40    40           0      0 0.0000000  0.0000000
#> 41    41           0      0 0.0000000  0.0000000
#> 42    42           2      1 0.5205955  2.0473501
#> 43    43           0      0 0.0000000  0.0000000
#> 44    44           0      0 0.0000000  0.0000000
#> 45    45           0      0 0.0000000  0.0000000
#> 46    46           0      0 0.0000000  0.0000000
#> 47    47           0      0 0.0000000  0.0000000
#> 48    48           0      1 0.5096457  2.0042877
#> 49    49           1      1 0.1814386  0.7135450
#> 50    50           0      0 0.0000000  0.0000000
#> 51    51           0      0 0.0000000  0.0000000
#> 52    52           0      0 0.0000000  0.0000000
#> 53    53           0      0 0.0000000  0.0000000
#> 54    54           0      0 0.0000000  0.0000000
#> 55    55           0      0 0.0000000  0.0000000
#> 56    56           0      0 0.0000000  0.0000000
#> 57    57           5      1 0.7142387  2.8088919
#> 58    58           0      0 0.0000000  0.0000000
#> 59    59           0      0 0.0000000  0.0000000
#> 60    60           0      0 0.0000000  0.0000000
#> 61    61           0      0 0.0000000  0.0000000
#> 62    62           0      0 0.0000000  0.0000000
#> 63    63           0      1 0.1668072  0.6560038
#> 64    64           0      0 0.0000000  0.0000000
#> 65    65           0      0 0.0000000  0.0000000
#> 66    66           0      0 0.0000000  0.0000000
#> 67    67           0      0 0.0000000  0.0000000
#> 68    68           0      0 0.0000000  0.0000000
#> 69    69           0      0 0.0000000  0.0000000
#> 70    70           0      0 0.0000000  0.0000000
#> 71    71           0      0 0.0000000  0.0000000
#> 72    72           0      0 0.0000000  0.0000000
#> 73    73           4      1 0.1937648  0.7620205
#> 74    74           0      0 0.0000000  0.0000000
#> 75    75           0      0 0.0000000  0.0000000
#> 76    76           0      0 0.0000000  0.0000000
#> 77    77           0      0 0.0000000  0.0000000
#> 78    78           0      0 0.0000000  0.0000000
#> 79    79           0      0 0.0000000  0.0000000
#> 80    80           0      0 0.0000000  0.0000000
#> 81    81           0      0 0.0000000  0.0000000
#> 82    82           4      2 0.4875471  1.9173803
#> 83    83           4      1 0.2849991  1.1208180
#> 84    84           5      1 0.4477398  1.7608296
#> 85    85           4      1 0.2126269  0.8361995
#> 86    86           0      0 0.0000000  0.0000000
#> 87    87           0      0 0.0000000  0.0000000
#> 88    88           0      0 0.0000000  0.0000000
#> 89    89           0      0 0.0000000  0.0000000
#> 90    90           5      1 0.1522237  0.5986513
#> 91    91           3      1 0.2857613  1.1238157
#> 92    92           0      0 0.0000000  0.0000000
#> 93    93           0      1 0.1784006  0.7015976
#> 94    94           0      0 0.0000000  0.0000000
#> 95    95           0      0 0.0000000  0.0000000
#> 96    96           0      0 0.0000000  0.0000000
#> 97    97           0      0 0.0000000  0.0000000
#> 98    98           0      0 0.0000000  0.0000000
#> 99    99           0      0 0.0000000  0.0000000
#> 100  100           0      0 0.0000000  0.0000000
#> 101  101           0      0 0.0000000  0.0000000
#> 102  102           0      0 0.0000000  0.0000000
data(Selection)
plot(networkCascade,nv=0.133, gr=Selection@group)

Perform gene selection

Import data.

library(Patterns)
library(CascadeData)
data(micro_S)
micro_S<-as.micro_array(micro_S,time=c(60,90,210,390),subject=6,gene_ID=rownames(micro_S))
data(micro_US)
micro_US<-as.micro_array(micro_US,time=c(60,90,210,390),subject=6,gene_ID=rownames(micro_US))

Select early genes (t1 or t2):

Selection1<-geneSelection(x=micro_S,y=micro_US,20,wanted.patterns=rbind(c(0,1,0,0),c(1,0,0,0),c(1,1,0,0)))

Section genes with first significant differential expression at t1:

Selection2<-geneSelection(x=micro_S,y=micro_US,20,peak=1)

Section genes with first significant differential expression at t2:

Selection3<-geneSelection(x=micro_S,y=micro_US,20,peak=2)

Select later genes (t3 or t4)

Selection4<-geneSelection(x=micro_S,y=micro_US,50,
wanted.patterns=rbind(c(0,0,1,0),c(0,0,0,1),c(1,1,0,0)))

Merge those selections:

Selection<-unionMicro(Selection1,Selection2)
Selection<-unionMicro(Selection,Selection3)
Selection<-unionMicro(Selection,Selection4)
head(Selection)
#> $microarray
#>                    US60       US90      US210
#> 210226_at    0.82417544  0.9166931  0.7310784
#> 233516_s_at -0.27395188 -2.3695246  0.6511830
#> 202081_at    0.60477249  0.6599672 -0.1884742
#> 236719_at   -2.07284086 -0.3123747  0.1792494
#> 236019_at   -0.08175065 -0.3699708 -0.4315901
#> 1563563_at  -1.44513486  1.6869516 -0.4297297
#> 
#> $name
#> [1] "210226_at"   "233516_s_at" "202081_at"   "236719_at"  
#> [5] "236019_at"   "1563563_at" 
#> 
#> $gene_ID
#> [1] "210226_at"   "233516_s_at" "202081_at"   "236719_at"  
#> [5] "236019_at"   "1563563_at" 
#> 
#> $group
#> [1] 1 2 1 1 1 1
#> 
#> $start_time
#> [1] 1 2 1 1 1 1
#> 
#> $time
#> [1]  60  90 210 390
#> 
#> $subject
#> [1] 6

Summarize the final selection:

summary(Selection)
#>       US60               US90               US210        
#>  Min.   :-2.76841   Min.   :-2.369525   Min.   :-1.6147  
#>  1st Qu.:-0.18028   1st Qu.:-0.181425   1st Qu.: 0.1985  
#>  Median : 0.05675   Median :-0.001924   Median : 0.9886  
#>  Mean   : 0.05764   Mean   : 0.278275   Mean   : 0.9611  
#>  3rd Qu.: 0.22438   3rd Qu.: 0.664063   3rd Qu.: 1.6918  
#>  Max.   : 2.86440   Max.   : 4.284675   Max.   : 3.6727  
#>      US390               US60              US90         
#>  Min.   :-2.60480   Min.   :-2.7932   Min.   :-2.49245  
#>  1st Qu.:-0.03884   1st Qu.:-0.5547   1st Qu.:-0.01944  
#>  Median : 0.31766   Median :-0.3089   Median : 0.14977  
#>  Mean   : 0.26428   Mean   :-0.2917   Mean   : 0.33720  
#>  3rd Qu.: 0.57117   3rd Qu.:-0.1725   3rd Qu.: 0.48744  
#>  Max.   : 2.54704   Max.   : 2.0267   Max.   : 3.37588  
#>      US210              US390               US60         
#>  Min.   :-1.21606   Min.   :-1.74407   Min.   :-2.94444  
#>  1st Qu.: 0.07966   1st Qu.:-0.26548   1st Qu.:-0.23136  
#>  Median : 0.72019   Median : 0.03616   Median :-0.04761  
#>  Mean   : 0.73063   Mean   : 0.06753   Mean   : 0.22115  
#>  3rd Qu.: 1.26164   3rd Qu.: 0.32496   3rd Qu.: 0.33157  
#>  Max.   : 3.87950   Max.   : 2.83321   Max.   : 3.31723  
#>       US90             US210             US390        
#>  Min.   :-0.9721   Min.   :-1.9349   Min.   :-3.8418  
#>  1st Qu.:-0.1027   1st Qu.: 0.3254   1st Qu.:-0.1592  
#>  Median : 0.2548   Median : 1.2512   Median : 0.1538  
#>  Mean   : 0.6479   Mean   : 1.0485   Mean   : 0.1219  
#>  3rd Qu.: 1.0737   3rd Qu.: 1.8513   3rd Qu.: 0.6268  
#>  Max.   : 4.3604   Max.   : 4.4860   Max.   : 1.9886  
#>       US60               US90              US210         
#>  Min.   :-2.85438   Min.   :-0.90355   Min.   :-0.83324  
#>  1st Qu.:-0.06031   1st Qu.:-0.08464   1st Qu.: 0.07605  
#>  Median : 0.03601   Median : 0.17135   Median : 0.52176  
#>  Mean   : 0.14593   Mean   : 0.41929   Mean   : 0.62446  
#>  3rd Qu.: 0.24568   3rd Qu.: 0.75565   3rd Qu.: 1.07821  
#>  Max.   : 1.82903   Max.   : 3.60640   Max.   : 2.27744  
#>      US390               US60               US90         
#>  Min.   :-0.96834   Min.   :-1.38002   Min.   :-2.94444  
#>  1st Qu.: 0.01569   1st Qu.:-0.19910   1st Qu.:-0.01758  
#>  Median : 0.17370   Median :-0.07962   Median : 0.16080  
#>  Mean   : 0.23854   Mean   : 0.12972   Mean   : 0.37123  
#>  3rd Qu.: 0.45189   3rd Qu.: 0.26113   3rd Qu.: 0.61933  
#>  Max.   : 1.90880   Max.   : 2.31074   Max.   : 3.24454  
#>      US210             US390              US60         
#>  Min.   :-1.0271   Min.   :-1.3636   Min.   :-1.79176  
#>  1st Qu.: 0.1459   1st Qu.:-0.1386   1st Qu.:-0.09822  
#>  Median : 0.7430   Median : 0.1492   Median : 0.03378  
#>  Mean   : 0.7972   Mean   : 0.1271   Mean   : 0.27978  
#>  3rd Qu.: 1.3922   3rd Qu.: 0.4825   3rd Qu.: 0.33548  
#>  Max.   : 3.6213   Max.   : 1.5979   Max.   : 3.16035  
#>       US90              US210             US390         
#>  Min.   :-3.20791   Min.   :-1.4716   Min.   :-1.95883  
#>  1st Qu.:-0.03963   1st Qu.: 0.1292   1st Qu.:-0.04786  
#>  Median : 0.28261   Median : 0.8392   Median : 0.22472  
#>  Mean   : 0.52529   Mean   : 0.7903   Mean   : 0.21171  
#>  3rd Qu.: 1.03256   3rd Qu.: 1.4416   3rd Qu.: 0.42511  
#>  Max.   : 3.19975   Max.   : 2.8027   Max.   : 2.14903

Plot the final selection:

plot(Selection)

This process could be improved by retrieve a real gene_ID using the bitr function of the ClusterProfiler package or by performing independent filtering using jetset package to only keep at most only probeset (the best one, if there is one good enough) per gene_ID.

Examples of outputs

![Infered F matrix of the network (General shape).](https://fbertran.

Copy Link

Version

Install

install.packages('Patterns')

Monthly Downloads

587

Version

1.3

License

GPL (>= 2)

Issues

Pull Requests

Stars

Forks

Maintainer

Frederic Bertrand

Last Published

March 21st, 2021

Functions in Patterns (1.3)

Selection

Selection of genes.
geneSelection

Methods for selecting genes
geneNeighborhood,network-method

Find the neighborhood of a set of nodes.
gene_expr_simulation,network-method

Simulates microarray data based on a given network.
predict,micro_array-method

Methods for Function predict
micro_array-class

Class "micro_array"
head,micro_array-method

Overview of a micro_array object
clustExploration,micro_array-method

A function to explore a dataset and cluster its rows.
print-methods

Print methods
micropredict-class

Class "micropredict"
clustInference,micro_array,numeric-method

A function to explore a dataset and cluster its rows.
dim

Dimension of the data
plotF

Plot functions for the F matrices.
analyze_network,network-method

Analysing the network
unionMicro-methods

Makes the union between two micro_array objects.
position-methods

Returns the position of edges in the network
as.micro_array

Coerce a matrix into a micro_array object.
summary-methods

Summary methods
compare-methods

Some basic criteria of comparison between actual and inferred network.
network-class

Class "network"
cutoff,network-method

Choose the best cutoff
evolution,network-method

See the evolution of the network with change of cutoff
network2gp

A example of an inferred cascade network (2 groups case).
network

A example of an inferred network (4 groups case).
inference

Reverse-engineer the network
network_random

Generates a network.
infos

Details on some probesets of the affy_hg_u133_plus_2 platform.
plot-methods

Plot
replaceUp

Replace matrix values triangular upper part and by band for the lower part.
replaceDown

Replace matrix values triangular lower part and by band for the upper part.
networkCascade

A example of an inferred cascade network (4 groups case).
unsupervised_clustering_auto_m_c,micro_array-method

Cluster a micro_array object: determine optimal fuzzification parameter and number of clusters.
probeMerge,micro_array-method

Function to merge probesets
unsupervised_clustering,micro_array,numeric,numeric-method

Cluster a micro_array object: performs the clustering.
replaceBand

Replace matrix values by band.
CLL

Expression data from healthy and malignant (chronic lymphocytic leukemia, CLL) human B-lymphocytes after B-cell receptor stimulation (GSE 39411 dataset)
IndicFshape

Create F matrices using specific intergroup actions for network inference.
CascadeFshape

Create F matrices shaped for cascade networks inference.
Net

Simulated network for examples.
Net_inf_PL

Reverse-engineered network of the M and Net simulated data.
CascadeFinit

Create initial F matrices for cascade networks inference.
Patterns-package

The Patterns Package
M

Simulated microarray.
IndicFinit

Create initial F matrices using specific intergroup actions for network inference.