# \donttest{
data(Selection)
data(infos)
pbst_NR4A1 = infos[infos$hgnc_symbol=="NR4A1", "affy_hg_u133_plus_2"]
pbst_EGR1 = infos[infos$hgnc_symbol=="EGR1", "affy_hg_u133_plus_2"]
gene_IDs = infos[match(Selection@name, infos$affy_hg_u133_plus_), "hgnc_symbol"]
data(networkCascade)
#A nv value can chosen using the cutoff function
nv = .02
NR4A1<-which(is.element(Selection@name,pbst_NR4A1))
EGR1<-which(is.element(Selection@name,pbst_EGR1))
P<-position(networkCascade,nv=nv)
#We predict gene expression modulations within the network if NR4A1 is experimentaly knocked-out.
prediction_ko5_NR4A1<-predict(Selection,networkCascade,nv=nv,targets=NR4A1,act_time_group=1:4)
#Then we plot the results. Here for example we see changes at time points t2, t3 ans t4:
plot(prediction_ko5_NR4A1,time=2:4,ini=P,label_v=gene_IDs)
#We predict gene expression modulations within the network if EGR1 is experimentaly knocked-out.
prediction_ko5_EGR1<-predict(Selection,networkCascade,nv=nv,targets=EGR1,act_time_group=1:4)
#Then we plot the results. Here for example we see changes at time point t2, t3 ans t4:
plot(prediction_ko5_EGR1,time=2:4,ini=P,label_v=gene_IDs)
# }
Run the code above in your browser using DataLab