powered by
Based on soft clustering performed by the Mfuzz package.
# S4 method for omics_array unsupervised_clustering_auto_m_c( M1, clust = NULL, mestim = NULL, M2 = NULL, data_log = TRUE, screen = NULL, crange = NULL, repeats = NULL, cselect = TRUE, dminimum = FALSE )
Estimate of the optimal fuzzification parameter.
Estimate of the optimal number of clusters.
More result from the cselection function of the Mfuzz package
Object of omics_array class.
[NULL] Number of clusters.
[NULL] Fuzzification parameter.
[NULL] Object of omics_array class,
[TRUE] Should data be logged?
[NULL] Specify `screen` parameter.
[NULL] Specify `crange` parameter.
[NULL] Specify `repeats` parameter.
[TRUE] Estimate `cselect` parameter.
[FALSE] Estimate `dminimum` parameter.
Bertrand Frederic, Myriam Maumy-Bertrand.
if(require(CascadeData)){ data(micro_S, package="CascadeData") M<-as.omics_array(micro_S[1:100,],1:4,6) mc<-unsupervised_clustering_auto_m_c(M) }
Run the code above in your browser using DataLab