Learn R Programming

PerformanceAnalytics (version 1.1.0)

VolatilitySkewness: Volatility and variability of the return distribution

Description

Volatility skewness is a similar measure to omega but using the second partial moment. It's the ratio of the upside variance compared to the downside variance. Variability skewness is the ratio of the upside risk compared to the downside risk.

Usage

VolatilitySkewness(R, MAR = 0,
    stat = c("volatility", "variability"), ...)

Arguments

R
an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns
MAR
Minimum Acceptable Return, in the same periodicity as your returns
stat
one of "volatility", "variability" indicating whether to return the volatility skewness or the variability skweness
...
any other passthru parameters

Details

$$VolatilitySkewness(R , MAR) = \frac{\sigma_U^2}{\sigma_D^2}$$

$$VariabilitySkewness(R , MAR) = \frac{\sigma_U}{\sigma_D}$$

where $\sigma_U$ is the Upside risk and $\sigma_D$ is the Downside Risk

References

Carl Bacon, Practical portfolio performance measurement and attribution, second edition 2008 p.97-98

Examples

Run this code
data(portfolio_bacon)
MAR = 0.005
print(VolatilitySkewness(portfolio_bacon[,1], MAR, stat="volatility")) #expected 1.32
print(VolatilitySkewness(portfolio_bacon[,1], MAR, stat="variability")) #expected 1.15

MAR = 0
data(managers)
# print(VolatilitySkewness(managers['1996'], MAR, stat="volatility"))
print(VolatilitySkewness(managers['1996',1], MAR, stat="volatility"))

Run the code above in your browser using DataLab