http://www.stanford.edu/~junli07/research.html.
PS.Main(dat, para=list())n: the data matrix. Rows for genes, columns for experiments (samples).
(2) y: the outcome vector
(3) type: 'twoclass', 'multiclass' or 'quant'
The following attributes are optional. If not specified, the default values will be used.
(4) pair: paired data or not. Default value: FALSE. Only take effect for twoclass data.
(5) gname: gene names. Default value: 1 : nrow(n). That is, the i'th gene is named "i".trans: to tranform the data using the order transformation or not to transform it. default value: TRUE
(2) npermu: number of permuations. default value: 100
(3) seed: random seed to generate the permutation indexes. default value: 10
(4) ct.sum: if the total number of reads of a gene across all experiments <= ct.sum,="" this="" gene="" will="" not="" be="" considered="" for="" differential="" expression="" detection.="" default value:="" 5.="" (5)="" ct.mean: if the mean number of reads of a gene across all experiments <= ct.mean,="" this="" gene="" will="" not="" be="" considered="" for="" differential="" expression="" detection.="" default value:="" 0.5.<="" p=""> (6) div: the number of divisions of genes for estimating theta. default value: 10
(7) pow.file: the file to store the power transform curve (mean(log(mu)) ~ 1/theta). default value: 'pow.txt'
All the above attributes are optional.
=>=> data(dat)
res <- PS.Main(dat)
Run the code above in your browser using DataLab