library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
## -- Define initial design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
bpop=c(CL=0.15, V=8, KA=1.0, Favail=1),
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(prop=0.01,add=0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0.01,
maxxt=120,
a=c(DOSE=70),
mina=c(DOSE=0.01),
maxa=c(DOSE=100))
############# END ###################
## Create PopED database
## (warfarin model for optimization)
#####################################
FIM <- evaluate.fim(poped.db)
dmf <- det(FIM)
blockfinal(fn="",fmf=FIM,
dmf=dmf,
groupsize=poped.db$design$groupsize,
ni=poped.db$design$ni,
xt=poped.db$design$xt,
x=poped.db$design$x,a=poped.db$design$a,
model_switch=poped.db$design$model_switch,
poped.db$parameters$param.pt.val$bpop,
poped.db$parameters$param.pt.val$d,
poped.db$parameters$docc,
poped.db$parameters$param.pt.val$sigma,
poped.db,
opt_xt=TRUE,
fmf_init=FIM,
dmf_init=dmf,
param_cvs_init=get_rse(FIM,poped.db))
Run the code above in your browser using DataLab