library(PopED)
############# START #################
## Create PopED database
## (warfarin model for optimization
## with parameter uncertainty)
#####################################
## Warfarin example from software comparison in:
## Nyberg et al., "Methods and software tools for design evaluation
## for population pharmacokinetics-pharmacodynamics studies",
## Br. J. Clin. Pharm., 2014.
## Optimization using an additive + proportional reidual error
## to avoid sample times at very low concentrations (time 0 or very late samoples).
## find the parameters that are needed to define from the structural model
ff.PK.1.comp.oral.sd.CL
## -- parameter definition function
## -- names match parameters in function ff
sfg <- function(x,a,bpop,b,bocc){
parameters=c(CL=bpop[1]*exp(b[1]),
V=bpop[2]*exp(b[2]),
KA=bpop[3]*exp(b[3]),
Favail=bpop[4],
DOSE=a[1])
return(parameters)
}
# Adding 10% log-normal Uncertainty to fixed effects (not Favail)
bpop_vals <- c(CL=0.15, V=8, KA=1.0, Favail=1)
bpop_vals_ed_ln <- cbind(ones(length(bpop_vals),1)*4, # log-normal distribution
bpop_vals,
ones(length(bpop_vals),1)*(bpop_vals*0.1)^2) # 10% of bpop value
bpop_vals_ed_ln["Favail",] <- c(0,1,0)
bpop_vals_ed_ln
## -- Define initial design and design space
poped.db <- create.poped.database(ff_fun=ff.PK.1.comp.oral.sd.CL,
fg_fun=sfg,
fError_fun=feps.add.prop,
bpop=bpop_vals_ed_ln,
notfixed_bpop=c(1,1,1,0),
d=c(CL=0.07, V=0.02, KA=0.6),
sigma=c(0.01,0.25),
groupsize=32,
xt=c( 0.5,1,2,6,24,36,72,120),
minxt=0,
maxxt=120,
a=70,
mina=0,
maxa=100)
############# END ###################
## Create PopED database
## (warfarin model for optimization
## with parameter uncertainty)
#####################################
## ED evaluate (with very few samples)
output <- evaluate.e.ofv.fim(poped.db,ED_samp_size=10)
output$E_ofv
## API evaluate (with very few samples)
output <- evaluate.e.ofv.fim(poped.db,ED_samp_size=10,ofv_calc_type=4)
output$E_ofv
## ED evaluate using Laplace approximation
tic()
output <- evaluate.e.ofv.fim(poped.db,use_laplace=TRUE)
toc()
output$E_ofv
if (FALSE) {
## ED expected value with more precision.
## Compare time and value to Laplace approximation.
## Run a couple of times to see stochasticity of calculation.
tic()
e_ofv_mc <- evaluate.e.ofv.fim(poped.db,ED_samp_size=500)
toc()
e_ofv_mc$E_ofv
# If you want to get an E(FIM) from the laplace approximation you have to ask for it
# and it will take more time.
output <- evaluate.e.ofv.fim(poped.db,use_laplace=TRUE,laplace.fim=TRUE)
output$E_fim
}
Run the code above in your browser using DataLab