Random generation for the Weibull distribution with parameters shape and scale.
This generator is called by function gensample to create random variables based on its parameters.
Arguments
Details
If shape or scale are not specified they assume the default values of 1 and 1, respectively.
The Weibull distribution with shape parameter \(k\) and scale parameter \(\lambda\) has density given by
$$ \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1}e^{-(x/\lambda)^k} $$
for \(x > 0\). The cumulative distribution function is \(F(x) = 1 - e^(-(x/\lambda)^k)\) on \(x > 0\),
the mean is \(E(X) = \lambda \Gamma(1 + 1/k)\), and the \(Var(X) = \lambda^2 * (\Gamma(1 + 2/k) - (\Gamma(1 + 1/k))^2)\).
References
Pierre Lafaye de Micheaux, Viet Anh Tran (2016). PoweR: A
Reproducible Research Tool to Ease Monte Carlo Power Simulation
Studies for Studies for Goodness-of-fit Tests in R. Journal of Statistical Software, 69(3), 1--42. doi:10.18637/jss.v069.i03