Computation of critical values for several test statistics, several n values, and several level values, for a given distribution
many.crit(law.index,stat.indices,M = 10^3,vectn = c(20,50,100),levels = c(0.05,0.1),
alter = create.alter(stat.indices),law.pars = NULL,parstats = NULL,model = NULL,
Rlaw=NULL, Rstats = NULL,center=FALSE, scale=FALSE)law index as given by function getindex. length(law.index)=1
vector of statistic indices as given by function getindex.
number of Monte Carlo repetitions to use.
vector of number of observations for the samples to be generated.
vector of required level values.
named-list with type of test for each statistical test:
alter[["statj"]]=0, 1 ,2, 3 or 4; for each \(j\) in stat.indices (0: two.sided=bilateral, 1: less=unilateral, 2:
greater=unilateral, 3: bilateral test that rejects H0 only for large
values of the test statistic, 4: bilateral test that rejects H0 only
for small values of the test statistic)
NULL or a vector of length at most 4 containing 4 possible
parameters to generate random values from distribution law(law.pars[\(j\)],\(j<=4\))
named-list of parameter values for each statistic to simulate.
The names of the list should be stat\(j\), \(j\) taken in stat.indices.
If stat\(j\)=NA, the default parameter values for
the test statistic stat\(j\) will be used.
NOT IMPLEMENTED YET. If NULL, no model is used.
If an integer \(i>0\), the model coded in the C function modele\(i\) is used.
Else this should be an R function that
takes three arguments: eps (vector of \(\epsilon\) values), thetavec
(vector of \(\theta\) values) and xvec (vector or matrix of \(x\) values).This function should take a
vector of errors, generate observations from a model (with
parameters thetavec and values xvec) based on these errors, then
compute and return the residuals from the model. See function
modele1.R in directory inst/doc/ for an example in multiple linear regression.
If 'law.index' is set to 0 then 'Rlaw' should be a (random generating) function.
A list of same length as stat.indices. If a value of the vector stat.indices is set to 0, the corresponding component of the list
Rstats should be an R function that outputs
a list with components statistic (value of the test statistic),
pvalue (pvalue of the test; if not computable should be set to 0), decision (1 if we reject the null,
0 otherwise), alter (see above), stat.pars (see above),
pvalcomp (1L if the pvalue can be computed, 0L otherwise),
nbparstat (length of stat.pars). If a value of stat.indices is not 0,
then the corresponding component of Rstats should be set to NULL.
Logical. Should we center the data generated
Logical. Should we center the data generated
An object of class critvalues, which is a list where each element of the list contains a matrix
for the corresponding statistic. This column matrices are: \(n\) values,
level values, parameters of the test statistic (NA if none), left critical values and right critical values).
Pierre Lafaye de Micheaux, Viet Anh Tran (2016). PoweR: A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Studies for Goodness-of-fit Tests in R. Journal of Statistical Software, 69(3), 1--42. doi:10.18637/jss.v069.i03
See print.critvalues for a LaTeX output of the
results of this function.
# NOT RUN {
critval <- many.crit(law.index=2,stat.indices=c(10,15),M=10^3,vectn=c(20,50,100),
level=c(0.05,0.1),alter=list(stat10=3,stat15=3),law.pars=NULL,
parstats=NULL)
print(critval,digits=3,latex.output=FALSE)
# }
Run the code above in your browser using DataLab