Computation of critical values for several test statistics, several n values, and several level values, for a given distribution
many.crit(law.index,stat.indices,M = 10^3,vectn = c(20,50,100),levels = c(0.05,0.1),
alter = create.alter(stat.indices),law.pars = NULL,parstats = NULL,model = NULL,
Rlaw=NULL, Rstats = NULL,center=FALSE, scale=FALSE)
law index as given by function getindex
. length(law.index
)=1
vector of statistic indices as given by function getindex
.
number of Monte Carlo repetitions to use.
vector of number of observations for the samples to be generated.
vector of required level values.
named-list with type of test for each statistical test:
alter[["statj"]]=0, 1 ,2, 3 or 4; for each \(j\) in stat.indices
(0: two.sided=bilateral, 1: less=unilateral, 2:
greater=unilateral, 3: bilateral test that rejects H0 only for large
values of the test statistic, 4: bilateral test that rejects H0 only
for small values of the test statistic)
NULL
or a vector of length at most 4 containing 4 possible
parameters to generate random values from distribution law(law.pars
[\(j\)],\(j<=4\))
named-list of parameter values for each statistic to simulate.
The names of the list should be stat
\(j\), \(j\) taken in stat.indices
.
If stat
\(j\)=NA
, the default parameter values for
the test statistic stat
\(j\) will be used.
NOT IMPLEMENTED YET. If NULL
, no model is used.
If an integer \(i>0\), the model coded in the C function modele
\(i\) is used.
Else this should be an R function that
takes three arguments: eps
(vector of \(\epsilon\) values), thetavec
(vector of \(\theta\) values) and xvec
(vector or matrix of \(x\) values).This function should take a
vector of errors, generate observations from a model (with
parameters thetavec
and values xvec
) based on these errors, then
compute and return the residuals from the model. See function
modele1.R in directory inst/doc/ for an example in multiple linear regression.
If 'law.index' is set to 0 then 'Rlaw' should be a (random generating) function.
A list of same length as stat.indices
. If a value of the vector stat.indices
is set to 0, the corresponding component of the list
Rstats
should be an R function that outputs
a list with components statistic
(value of the test statistic),
pvalue
(pvalue of the test; if not computable should be set to 0), decision
(1 if we reject the null,
0 otherwise), alter
(see above), stat.pars
(see above),
pvalcomp
(1L if the pvalue can be computed, 0L otherwise),
nbparstat
(length of stat.pars). If a value of stat.indices
is not 0,
then the corresponding component of Rstats
should be set to NULL
.
Logical. Should we center the data generated
Logical. Should we center the data generated
An object of class critvalues
, which is a list where each element of the list contains a matrix
for the corresponding statistic. This column matrices are: \(n\) values,
level values, parameters of the test statistic (NA
if none), left critical values and right critical values).
Pierre Lafaye de Micheaux, Viet Anh Tran (2016). PoweR: A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Studies for Goodness-of-fit Tests in R. Journal of Statistical Software, 69(3), 1--42. doi:10.18637/jss.v069.i03
See print.critvalues
for a LaTeX output of the
results of this function.
# NOT RUN {
critval <- many.crit(law.index=2,stat.indices=c(10,15),M=10^3,vectn=c(20,50,100),
level=c(0.05,0.1),alter=list(stat10=3,stat15=3),law.pars=NULL,
parstats=NULL)
print(critval,digits=3,latex.output=FALSE)
# }
Run the code above in your browser using DataLab