Learn R Programming

PowerTOST (version 1.3-5)

pa.NTIDFDA: Power analysis for scaled ABE for NTID according to FDA

Description

An analysis tool for exploration/visualization of the impact of expected values (CV, theta0, reduced sample size due to drop-outs) on power of BE decision via scABE for narrow therapeutic drugs (NTID) if these values deviate from the ones assumed in planning the sample size of the study. The only implemented design is the full replicate design "2x2x4" according to the FDA Warfarin guidance.

Usage

pa.NTIDFDA(CV, theta0=0.975, targetpower=0.8, minpower=0.7, ...)

Arguments

CV
Coefficient of variation of the intra-subject vriabilities of Test and Reference as ratio. Here only the case CVwT=CVwR is implemented, i.e. CV has to be a scalar.
theta0
'True' or assumed bioequivalence ratio. Often named GMR. Must be given as ratio. Defaults here to 0.975.
targetpower
Power to achieve at least in sample size estimation. Must be >0 and
minpower
Minimum acceptable power to have if deviating from assumptions for sample size plan. Has to be lower than targetpower. Defaults to 0.7. minpower < 0.5 doesn't make many sense.
...
More arguments to pass to power.NTIDFDA(). F. i. alpha, theta1, theta2 or nsims if other values then the defaults for these arguments are needed. See man page of power.NTIDFDA()

Value

  • Returns a list with class 'pwrA' with the components
  • planA data.frame with the result of the sample size estimation. See output of sampleN.NTIDFDA()
  • .
  • paCVA data.frame with value pairs CV, pwr for impact of deviations from CV.
  • paGMRA data.frame with value pairs theta0, pwr for impact of deviations from theta0 (GMR).
  • paNA data.frame with value pairs N, pwr for impact of deviations from planned N (drop-outs).
  • methodMethod of BE decision. Here fix = "NTID FDA".
  • regulatorHere fix = "FDA".
  • minpowerMinimum acceptable power from the call of the function.
  • The class 'pwrA' has the S3 methods print() and plot(). See pa.ABE for usage.

Warning

Be extremly carefull if your sample size plan has extremly small CV near or below 0.05 (5%). Adapt in that case your expected true ratio (theta0) to values nearer to 1 to not run into errors and/or long execution times.

Details

Power calculations are done via power.NTIDFDA() and calculations of CV and theta0 which result in minpower are derived via uniroot(). While one of the parameters (CV, GMR, n) is varied, the respective two others are kept constant. The tool shows the relative impact of single parameters on power. The tool takes a minimum of 12 subjects into account as demanded in most BE guidances. It should be kept in mind that this is not a substitute for the "Sensitivity Analysis" recommended in ICH-E9. In a real study a combination of all effects occurs simultaneously. It's upto you to decide on reasonable combinations and analyze the power of them.

References

FDA "Draft Guidance on Warfarin Sodium" Recommended Dec 2012 http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM201283.pdf

See Also

power.NTIDFDA, pa.ABE, pa.scABE print.pwrA, plot.pwrA

Examples

Run this code
# using the defaults:
# targetpower=0.8, minpower=0.7, theta0/GMR=0.975
# BE acceptance range from defaults of sampleN.NTIDFDA() 0.8 ... 1.25
# 1E5 sims in power.NTIDFDA()
# not run due to timing policy of CRAN for examples
# may run some ten seconds or more
plot(pa.NTIDFDA(CV=0.1))

Run the code above in your browser using DataLab