# sample size for a 2x2 cross-over study
# with CVw=0.2, CVb=0.4
# alpha=0.025 (95% CIs), target power = 80%
# 'true' ratio = 95%, BE acceptance limits 80-125%
# using all the defaults:
sampleN.RatioF(CV = 0.2, CVb = 0.4)
# gives n=28 with an achieved power of 0.807774
# see Hauschke et.al. (2007) Table 10.3a
# sample size for a 2-group parallel study
# with CV=0.4 (total variability)
# alpha=0.025 (95% CIs), target power = 90%
# 'true' ratio = 90%, BE acceptance limits 75-133.33%
sampleN.RatioF(targetpower = 0.9, theta1 = 0.75,
theta0 = 0.90, CV = 0.4, design = "parallel")
# gives n=236 with an achieved power of 0.900685
# see Hauschke et.al. (2007) Table 10.2
# a rather strange setting of ratio0! have a look at n.
# it would be better this is not the sample size but your account balance ;-).
sampleN.RatioF(theta0 = 0.801, CV = 0.2, CVb = 0.4)
Run the code above in your browser using DataLab