mdes.bcra3r2
calculates minimum detectable effect size (MDES) for designs with 3-levels
where level 2 units are randomly assigned to treatment and control groups within level 3 units (random blocks).mdes.bcra3r2(power=.80, alpha=.05, two.tail=TRUE,
rho2, rho3, omega3,
P=.50, g3=0, R12=0, R22=0, RT32=0,
n, J, K, ...)
TRUE
for two-tailed hypothesis testing, FALSE
for one-tailed hypothesis testing. power.bcra3r2, mrss.bcra3r2, optimal.bcra3r2
## Not run: ------------------------------------
#
# mdes.bcra3r2(rho3=.13, rho2=.10, omega3=.40,
# n=10, J=6, K=24)
#
#
## ---------------------------------------------
Run the code above in your browser using DataLab