powered by
Use mdes.ira1r1() to calculate minimum detectable effect size, power.ira1r1() to calculate statistical power, and mrss.ira1r1() to calculate minimum required sample size.
mdes.ira1r1()
power.ira1r1()
mrss.ira1r1()
mdes.ira1r1(power=.80, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n)power.ira1r1(es=.25, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n)mrss.ira1r1(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n0=10, tol=.10, p=.50, g1=0, r21=0)
power.ira1r1(es=.25, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n)
mrss.ira1r1(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n0=10, tol=.10, p=.50, g1=0, r21=0)
statistical power \((1-\beta)\).
effect size.
probability of type I error.
logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
TRUE
FALSE
proportion of units randomly assigned to treatment.
number of covariates.
proportion of variance in the outcome explained by covariates.
sample size.
starting value for n.
n
tolerance to end iterative process for finding n.
function name.
list of parameters used in power calculation.
degrees of freedom.
noncentrality parameter.
minimum detectable effect size.
power.ird1r1
# NOT RUN { # cross-checks mdes.ira1r1(n=250) power.ira1r1(es=.356, n=250) mrss.ira1r1(es=.356) # }
Run the code above in your browser using DataLab