# NOT RUN {
### EXAMPLE 1 ###
### a graph illustrating effect of shape parameters on beta distribution
set.seed(666)
shapes<-c(1,2,5,10,20)
par(mfrow=c(5,5),mar=c(2,2,2,2),oma=c(0,3,3,0))
for(i in 1:5){
for(j in 1:5){
SIMDATA<-presence.absence.simulation( n=1000,
prevalence=1,
N.models=1,
shape1.absent=1,
shape2.absent=1,
shape1.present=shapes[i],
shape2.present=shapes[j])
#Note: by setting prevalence=1, all observed values will be 'present'
# therefore only one beta distribution will be simulated.
hist(SIMDATA[,3],breaks=50,main="",xlab="",ylab="",xlim=c(0,1))
if(i==1){mtext(paste("shape2 =",shapes[j]),side=3,line=2,cex=.8)}
if(j==1){mtext(paste("shape1 =",shapes[i]),side=2,line=3,cex=.8)}
}}
### EXAMPLE 2 ###
### generate observed data along with 3 sets of model predictions
### for models of varying predictive ability.
### Note: This is the code used to generate sample dataset SIM3DATA.
set.seed(666)
SIM3DATA<-presence.absence.simulation( n=1000,
prevalence=.2,
N.models=3,
shape1.absent=c(1,1,1),
shape2.absent=c(14,7,5),
shape1.present=c(6,2,1),
shape2.present=c(2,2,2))
# }
Run the code above in your browser using DataLab