Learn R Programming

PriceIndices (version 0.2.3)

load_model: Loading the machine learning model from the disk

Description

This function loads a list of machine learning model elements from the disk, i.e. the needed 8 files are read.

Usage

load_model(dir = "ML_model")

Value

This function loads a list of ML model elements from the disk, i.e. the needed 8 files are read from the directory selected by dir. After loading the model it can be used for product classification by using data_classifying function.

Arguments

dir

The name of the directory from which the machine learning model is to be loaded. The directory must be in the working directory.

Examples

Run this code
#Setting a temporal directory as a working directory
if (FALSE) wd<-tempdir()
if (FALSE) setwd(wd)
#Building the model
my.grid=list(eta=c(0.01,0.02,0.05),subsample=c(0.5,0.8))
data_train<-dplyr::filter(dataCOICOP,dataCOICOP$time<=as.Date("2021-10-01"))
data_test<-dplyr::filter(dataCOICOP,dataCOICOP$time==as.Date("2021-11-01"))
ML<-model_classification(data_train,data_test,class="coicop6",grid=my.grid,
indicators=c("description","codeIN", "grammage"),key_words=c("uht"),rounds=60)
#Saving the model
if (FALSE) save_model(ML, dir="My_model")
#Loading the model
if (FALSE) ML_fromPC<-load_model("My_model")
#classes predicting
if (FALSE) data_classifying(ML_fromPC, data_test)

Run the code above in your browser using DataLab