## Loading data
library(fields)
library(RandomFields)
data(slp)
data(gridlong)
data(gridlat)
data(forecast.grid)
day <- slp$date.obs
id <- slp$id.stat
coord1 <- slp$lon.stat
coord2 <- slp$lat.stat
obs <- slp$obs
forecast <- slp$forecast
coord1.grid <- gridlong$gridded.long
coord2.grid <- gridlat$gridded.lat
forecast.grid <- forecast.grid$gridded.forecast
## Computing the empirical variogram
variogram <- Emp.variog(day,obs,forecast,id,coord1,coord2,cut.points=NULL,
max.dist=NULL,nbins=NULL)
## Estimating parameters
param.est <- Variog.fit(variogram,"exponential",max.dist.fit=NULL,
init.val=NULL,fix.nugget=FALSE)
## Simulating realizations of the weather random field
simul <- Field.sim(obs, forecast, coord1.grid, coord2.grid, forecast.grid,
variog.model="exponential", param.est=c(param.est$nugget,param.est$variance,
param.est$range), n.sim=4, n.displ=0, qt.displ=c(10,50,90))
##Plotting one of the simulated weather random fields
par(mfrow=c(1,1),mai=c(0.8,0.8,0.8,0.8))
plotfields(simul$sim.fields[,,1],x.lim=c(min(coord1.grid),max(coord1.grid)),
y.lim=c(min(coord2.grid),max(coord2.grid)),country.outline="US",title="Simulated weather field")
## Plotting one of the percentiles of the weather field
par(mfrow=c(1,1),mai=c(0.8,0.8,0.8,0.8))
plotfields(simul$pct.fields[,,1],x.lim=c(min(coord1.grid),max(coord1.grid)),
y.lim=c(min(coord2.grid),max(coord2.grid)),country.outline="US",title="10th percentile")
Run the code above in your browser using DataLab