CCA Projects data vectors using Curvilinear Component Analysis [Demartines/Herault, 1995],[Demartines/Herault, 1997].
Unknown values (NaN's) in the data: projections of vectors with unknown components tend to drift towards the center of the projection distribution. Projections of totally unknown vectors are set to unknown (NaN).
CCA(DataOrDistances,Epochs,OutputDimension=2,method='euclidean',alpha0 = 0.5, lambda0,PlotIt=FALSE,Cls)
A n by OutputDimension matrix containing coordinates of the projected points.
Numerical matrix defined as either
Data
, i.e., [1:n,1:d], nonsymmetric, and consists of n cases of d-dimensional data points with every case having d attributes, variables or features,
or
Distances
, i.e.,[1:n,1:n], symmetric and consists of n cases, e.g., as.matrix(dist(Data,method))
Number of eppochs (scalar), i.e, training length
Number of dimensions in the Outputspace, default=2
method specified by distance string. One of: 'euclidean','cityblock=manhatten','cosine','chebychev','jaccard','minkowski','manhattan','binary'
(scalar) initial step size, 0.5 by default
(scalar) initial radius of influence, 3*max(std(D)) by default
Default: FALSE, If TRUE: Plots the projection as a 2d visualization. OutputDimension>2: only the first two dimensions will be shown
[1:n,1] Optional,: only relevant if PlotIt=TRUE. Numeric vector, given Classification in numbers: every element is the cluster number of a certain corresponding element of data.
Florian Lerch
An short overview of different types of projection methods can be found in [Thrun, 2018, p.42, Fig. 4.1] (tools:::Rd_expr_doi("10.1007/978-3-658-20540-9")).
[Demartines/Herault, 1997] Demartines, P., & Herault, J.: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets, IEEE Transactions on Neural Networks, Vol. 8(1), pp. 148-154. 1997.
[Demartines/Herault, 1995] Demartines, P., & Herault, J.: CCA:" Curvilinear component analysis", Proc. 15 Colloque sur le traitement du signal et des images, Vol. 199, GRETSI, Groupe d'Etudes du Traitement du Signal et des Images, France 18-21 September, 1995.
data('Hepta')
Data=Hepta$Data
Proj=CCA(Data,Epochs=20)
if (FALSE) {
PlotProjectedPoints(Proj$ProjectedPoints,Hepta$Cls)
}
Run the code above in your browser using DataLab