# linear regression
data(Diabetes)
f1 <- glm(bp.1s~age+gender+frame+chol,data=Diabetes)
summary(regressionTable(f1))
summary(regressionTable(f1,units=list("chol"="mmol/L","age"="years")))
## with interaction
f2 <- glm(bp.1s~age*gender+frame+chol,data=Diabetes)
summary(regressionTable(f2))
#Add reference values
summary(regressionTable(f2))
f3 <- glm(bp.1s~age+gender*frame+chol,data=Diabetes)
publish(f3)
regressionTable(f3)
# logistic regression
Diabetes$hyp1 <- factor(1*(Diabetes$bp.1s>140))
l1 <- glm(hyp1~age+gender+frame+chol,data=Diabetes,family="binomial")
regressionTable(l1)
publish(l1)
plot(regressionTable(l1))
## with interaction
l2 <- glm(hyp1~age+gender+frame*chol,data=Diabetes,family="binomial")
regressionTable(l2)
l3 <- glm(hyp1~age*gender+frame*chol,data=Diabetes,family="binomial")
regressionTable(l3)
# Cox regression
library(survival)
data(pbc)
pbc$edema <- factor(pbc$edema,levels=c("0","0.5","1"),labels=c("0","0.5","1"))
c1 <- coxph(Surv(time,status!=0)~log(bili)+age+protime+sex+edema,data=pbc)
regressionTable(c1)
# with interaction
c2 <- coxph(Surv(time,status!=0)~log(bili)+age+protime*sex+edema,data=pbc)
regressionTable(c2)
c3 <- coxph(Surv(time,status!=0)~edema*log(bili)+age+protime+sex+edema+edema:sex,data=pbc)
regressionTable(c3)
if (requireNamespace("nlme",quietly=TRUE)){
## gls regression
library(lava)
library(nlme)
m <- lvm(Y ~ X1 + gender + group + Interaction)
distribution(m, ~gender) <- binomial.lvm()
distribution(m, ~group) <- binomial.lvm(size = 2)
constrain(m, Interaction ~ gender + group) <- function(x){x[,1]*x[,2]}
d <- sim(m, 1e2)
d$gender <- factor(d$gender, labels = letters[1:2])
d$group <- factor(d$group)
e.gls <- gls(Y ~ X1 + gender*group, data = d,
weights = varIdent(form = ~1|group))
regressionTable(e.gls)
summary(regressionTable(e.gls))
}
Run the code above in your browser using DataLab