Learn R Programming

QZ

  • License:
  • Download:
  • Status:
  • Author: Wei-Chen Chen

QZ is an R package providing QZ factorization for generalized eigenvalues and eigenvectors via QZ decomposition (generalized Schur decomposition). Typically, the decomposition needs an N-by-N non-symmetric matrix A or paired matrices (A,B) with eigenvalues reordering mechanism. The decomposition functions are mainly based Fortran subroutines in complex*16 and double precision of LAPACK library (version 3.4.2. or later).

QZ requires

  • R version 3.6.0 or higher.
  • For installing QZ, see INSTALL file for details.
  • More information about QZ can be found in the QZ vignette at QZ/inst/doc/QZ-guide.pdf.

Copy Link

Version

Install

install.packages('QZ')

Monthly Downloads

253

Version

0.2-4

License

Mozilla Public License 2.0

Maintainer

Wei-Chen Chen

Last Published

April 13th, 2025

Functions in QZ (0.2-4)

qz.dggev

Generalized Eigenvalues Decomposition for Real Paired Matrices
qz.ztrsen

Reordered QZ Decomposition for a Complex Matrix
Conjugate transpose

Conjugate Transpose for Complex Matrix
qz.zgees

QZ Decomposition for a Complex Matrix
qz.zgeev

Generalized Eigenvalues Decomposition for a Complex Matrix
qz.dgees

QZ Decomposition for a Real Matrix
qz.dtrsen

Reordered QZ Decomposition for a Real Matrix
Print methods

Functions for Printing Objects According to Classes
qz.dtgsen

Reordered QZ Decomposition for Real Paired Matrices
qz.dgeev

Generalized Eigenvalues Decomposition for a Real Matrix
qz.ztgsen

Reordered QZ Decomposition for Complex Paired Matrices
QZ Decomposition

QZ Decomposition
QZ-package

Generalized Eigenvalues and QZ Decomposition
qz.zggev

Generalized Eigenvalues Decomposition for Complex Paired Matrices
fda.geigen

Generalized Eigen Analysis as in fda Package
Generalized Eigenvalues

Generalized Eigen Values
QZ Decomposition Reordering

Reordering QZ Decomposition
qz.dgges

QZ Decomposition for Real Paired Matrices
Example datasets

Small example datasets
qz.zgges

QZ Decomposition for Complex Paired Matrices