if (FALSE) {
# Iris data
data(iris)
# Create training and prediction datasets
n <- nrow(iris)
ng <- length(unique(iris$Species))
df1 <- iris[c(1:40, 51:90, 101:140),]
df2 <- iris[c(41:50, 91:100, 141:150),]
# Classify
ctrl <- dqcControl(nt = 10, ndir = 5000, seed = 123)
fit <- dqc(Species ~ Sepal.Length + Petal.Length,
data = df1, df.test = df2, control = ctrl)
# Data frame with predictions
fit$ans
# Confusion matrix
print(cm <- xtabs( ~ fit$ans$groups + df2$Species))
# Misclassification rate
1-sum(diag(cm))/nrow(df2)
}
Run the code above in your browser using DataLab