data("sq_trees")
# Calculate the status of each quartet relative to the first entry in
# sq_trees
sq_status <- QuartetStatus(sq_trees)
# Calculate the status of each quartet relative to a given tree
two_moved <- sq_trees[5:7]
sq_status <- QuartetStatus(two_moved, sq_trees$ref_tree)
# Calculate Estabrook et al's similarity measures:
SimilarityMetrics(sq_status)
# Compare trees that include a subset of the taxa 1..10
library("TreeTools", quietly = TRUE, warn.conflict = FALSE)
QuartetStatus(BalancedTree(1:5), BalancedTree(3:8), nTip = 10)
# If all taxa studied occur in `trees` or `cf`, set `nTip = TRUE`
QuartetStatus(BalancedTree(1:5), BalancedTree(3:10), nTip = TRUE)
# Calculate Quartet Divergence between each tree and each other tree in a
# list
QuartetDivergence(ManyToManyQuartetAgreement(two_moved))
# Calculate Quartet Divergence between each tree in one list and each
# tree in another
QuartetDivergence(TwoListQuartetAgreement(sq_trees[1:3], sq_trees[10:13]))
Run the code above in your browser using DataLab