#Loading package
library(R0)
## Data is taken from the paper by Nishiura for key transmission parameters of an institutional
## outbreak during 1918 influenza pandemic in Germany)
data(Germany.1918)
mGT <- generation.time("gamma", c(3,1.5))
SB <- est.R0.SB(Germany.1918, mGT)
## Results will include "most likely R(t)" (ie. the R(t) value for which the computed probability
## is the highest), along with 95% CI, in a data.frame object
SB
# Reproduction number estimate using Real Time Bayesian method.
# 0 0 2.02 0.71 1.17 1.7 1.36 1.53 1.28 1.43 ...
SB$Rt.quant
# Date R.t. CI.lower. CI.upper.
# 1 1918-09-29 0.00 0.01 1.44
# 2 1918-09-30 0.00 0.01 1.42
# 3 1918-10-01 2.02 0.97 2.88
# 4 1918-10-02 0.71 0.07 1.51
# 5 1918-10-03 1.17 0.40 1.84
# 6 1918-10-04 1.70 1.09 2.24
# 7 1918-10-05 1.36 0.84 1.83
# 8 1918-10-06 1.53 1.08 1.94
# 9 1918-10-07 1.28 0.88 1.66
# 10 1918-10-08 1.43 1.08 1.77
# ...
## "Plot" will provide the most-likely R value at each time unit, along with 95CI
plot(SB)
## "Plotfit" will show the complete distribution of R for 9 time unit throughout the outbreak
plotfit(SB)
Run the code above in your browser using DataLab