Learn R Programming

RAHRS (version 1.0.2)

ahrs.LKF.QUATERNION: LKF-based AHRS algorithm

Description

Implementation of the LKF-based AHRS algorithm based on measurements from three-component accelerometer with orthogonal axes, vector magnetometer and three-axis gyroscope. Estimates the current quaternion attitude.

Usage

ahrs.LKF.QUATERNION(Filter, Sensors, q, Parameters, dw)

Arguments

Filter
data structure for Linear Kalman Filter Filter.x State vector [3x1] Filter.P Covariance matrix [3x3] Filter.Q System noise matrix [3x3] Filter.R Measurement noise matrix [6x6]
Sensors
sensors data structure Sensors.w current calibrated gyroscope measurement [3x1], rad/sec Sensors.a current calibrated accelerometer measurement [3x1], g Sensors.m current calibrated magnetometer measurement [3x1], |m| = 1
q
quaternion
Parameters
AHRS Parameters Parameters.mn Magnetic Field Vector In Navigation Frame [3x1], |m| = 1 Parameters.an Acceleration vector In Navigation Frame [3x1], g Parameters.dt Sampling period, 1/Hz
dw
angular rate

Value

Filter
Data structure for Linear Kalman Filter
Q
Correct quaternion
dw
Correct angular rate

References

Vlad Maximov, 2012 Scalar Calibration of Vector accelerometers and magnetometers, GyroLib documentation