Learn R Programming

RAHRS (version 1.0.2)

ahrs.LKF.VMATCH: Quaternion estimation with vector matching and Kalman filter

Description

Attitude quaternion estimation by means of complementary Kalman filter.

Usage

ahrs.LKF.VMATCH(Filter, Sensors, q, Parameters)

Arguments

Filter
data structure for Linear Kalman Filter Filter.x State vector [3x1] Filter.P Covariance matrix [3x3] Filter.Q System noise matrix [3x3] Filter.R Measurement noise matrix [6x6]
Sensors
sensors data structure Sensors.w current calibrated gyroscope measurement [3x1], rad/sec Sensors.a current calibrated accelerometer measurement [3x1], g Sensors.m current calibrated magnetometer measurement [3x1], |m| = 1
q
quaternion
Parameters
AHRS Parameters Parameters.mn Magnetic Field Vector In Navigation Frame [3x1], |m| = 1 Parameters.an Acceleration vector In Navigation Frame [3x1], g Parameters.dt Sampling period, 1/Hz

Value

Filter
data structure for Linear Kalman Filter
Q
Correct quaternion

References

Vlad Maximov, 2012 Scalar Calibration of Vector accelerometers and magnetometers, GyroLib documentation