# \dontshow{
### Import RAINBOWR
require(RAINBOWR)
### Load example datasets
data("Rice_Zhao_etal")
Rice_geno_score <- Rice_Zhao_etal$genoScore
Rice_geno_map <- Rice_Zhao_etal$genoMap
Rice_pheno <- Rice_Zhao_etal$pheno
### Select one trait for example
trait.name <- "Flowering.time.at.Arkansas"
y <- as.matrix(Rice_pheno[1:30, trait.name, drop = FALSE])
# use first 30 accessions
### Remove SNPs whose MAF <= 0.05
x.0 <- t(Rice_geno_score)
MAF.cut.res <- MAF.cut(x.0 = x.0, map.0 = Rice_geno_map)
x <- MAF.cut.res$x
map <- MAF.cut.res$map
### Estimate genomic relationship matrix (GRM)
K.A <- calcGRM(genoMat = x)
### Modify data
modify.res <- modify.data(pheno.mat = y, geno.mat = x, return.ZETA = TRUE)
pheno.mat <- modify.res$pheno.modi
ZETA <- modify.res$ZETA
### Solve linear mixed effects model
EMM.res <- EMM.cpp(y = pheno.mat, X = NULL, ZETA = ZETA)
Vu <- EMM.res$Vu ### estimated genetic variance
Ve <- EMM.res$Ve ### estimated residual variance
herit <- Vu / (Vu + Ve) ### genomic heritability
beta <- EMM.res$beta ### Here, this is an intercept.
u <- EMM.res$u ### estimated genotypic values
# }
### Perform genomic prediction with 10-fold cross validation
# \donttest{
### Import RAINBOWR
require(RAINBOWR)
### Load example datasets
data("Rice_Zhao_etal")
Rice_geno_score <- Rice_Zhao_etal$genoScore
Rice_geno_map <- Rice_Zhao_etal$genoMap
Rice_pheno <- Rice_Zhao_etal$pheno
### View each dataset
See(Rice_geno_score)
See(Rice_geno_map)
See(Rice_pheno)
### Select one trait for example
trait.name <- "Flowering.time.at.Arkansas"
y <- as.matrix(Rice_pheno[, trait.name, drop = FALSE])
### Remove SNPs whose MAF <= 0.05
x.0 <- t(Rice_geno_score)
MAF.cut.res <- MAF.cut(x.0 = x.0, map.0 = Rice_geno_map)
x <- MAF.cut.res$x
map <- MAF.cut.res$map
### Estimate genomic relationship matrix (GRM)
K.A <- calcGRM(genoMat = x)
### Modify data
modify.res <- modify.data(pheno.mat = y, geno.mat = x, return.ZETA = TRUE)
pheno.mat <- modify.res$pheno.modi
ZETA <- modify.res$ZETA
### Solve linear mixed effects model
EMM.res <- EMM.cpp(y = pheno.mat, X = NULL, ZETA = ZETA)
(Vu <- EMM.res$Vu) ### estimated genetic variance
(Ve <- EMM.res$Ve) ### estimated residual variance
(herit <- Vu / (Vu + Ve)) ### genomic heritability
(beta <- EMM.res$beta) ### Here, this is an intercept.
u <- EMM.res$u ### estimated genotypic values
See(u)
### Estimate marker effects from estimated genotypic values
x.modi <- modify.res$geno.modi
WMat <- calcGRM(genoMat = x.modi, methodGRM = "addNOIA",
returnWMat = TRUE)
K.A <- ZETA$A$K
if (min(eigen(K.A)$values) < 1e-08) {
diag(K.A) <- diag(K.A) + 1e-06
}
mrkEffectsForW <- crossprod(x = WMat,
y = solve(K.A)) %*% as.matrix(u)
mrkEffects <- mrkEffectsForW / mean(scale(x.modi %*% mrkEffectsForW, scale = FALSE) / u)
#### Cross-validation for genomic prediction
noNA <- !is.na(c(pheno.mat)) ### NA (missing) in the phenotype data
phenoNoNA <- pheno.mat[noNA, , drop = FALSE] ### remove NA
ZETANoNA <- ZETA
ZETANoNA$A$Z <- ZETA$A$Z[noNA, ] ### remove NA
nFold <- 10 ### # of folds
nLine <- nrow(phenoNoNA)
idCV <- sample(1:nLine %% nFold) ### assign random ids for cross-validation
idCV[idCV == 0] <- nFold
yPred <- rep(NA, nLine)
for (noCV in 1:nFold) {
yTrain <- phenoNoNA
yTrain[idCV == noCV, ] <- NA ### prepare test data
EMM.resCV <- EMM.cpp(y = yTrain, X = NULL, ZETA = ZETANoNA) ### prediction
yTest <- EMM.resCV$beta + EMM.resCV$u ### predicted values
yPred[idCV == noCV] <- (yTest[noNA])[idCV == noCV]
}
### Plot the results
plotRange <- range(phenoNoNA, yPred)
plot(x = phenoNoNA, y = yPred,xlim = plotRange, ylim = plotRange,
xlab = "Observed values", ylab = "Predicted values",
main = "Results of Genomic Prediction",
cex.lab = 1.5, cex.main = 1.5, cex.axis = 1.3)
abline(a = 0, b = 1, col = 2, lwd = 2, lty = 2)
R2 <- cor(x = phenoNoNA[, 1], y = yPred) ^ 2
text(x = plotRange[2] - 10,
y = plotRange[1] + 10,
paste0("R2 = ", round(R2, 3)),
cex = 1.5)
# }
Run the code above in your browser using DataLab